I-d диаграмма для начинающих (ID диаграмма состояния влажного воздуха для чайников). Микроклимат в камере выращивания вешенки Определение параметров влажного воздуха на Id диаграмме

Определять параметры влажного воздуха, а также решать ряд практических вопросов, связанных с сушкой различных материалов, весьма удобно графическим путем с помощью i-d диаграммы, впервые предложенным советским ученым Л. К. Рамзиным в 1918 году.

Строится для барометрического давления 98 кПа. Практически диаграммой можно пользоваться во всех случаях расчета сушилок, так как при обычных колебаниях атмосферного давления значения i и d изменяются мало.

Диаграмма в координатах i-d представляет собой графическую интерпретацию уравнения энтальпии влажного воздуха. Она отражает связь основных параметров влажного воздуха. Каждая точка на диаграмме выделяет некоторое состояние с вполне определёнными параметрами. Для нахождения любой из характеристик влажного воздуха достаточно знать только два параметра его состояния.

I-d диаграмма влажного воздуха построена в косоугольной системе координат. На оси ординат вверх и вниз от нулевой точки (i = 0, d = 0) откладывают значения энтальпии и проводят линии i = const параллельно оси абсцисс, то есть под углом 135 0 к вертикали. При этом изотерма 0 о С в ненасыщенной области располагается почти горизонтально. Что же касается масштаба для отсчета влагосодержания d, то для удобства его сносят на горизонтальную прямую, проходящую через начало координат.

На i-d диаграмму наносят также кривую парциального давления водяного пара. С этой целью используют уравнение:

Р п = В*d/(0,622 + d),

Hешая которое для переменных значений d получаем, что, например при d=0 Р п =0, при d=d 1 Р п =Р п1 , при d=d 2 Р п =Р п2 и т.д. Задаваясь определенным масштабом для парциальных давлений, в нижней части диаграммы в прямоугольной системе осей координат по указанным точкам строят кривую Р п =f(d). После этого на i-d диаграмму наносят кривые линии постоянной относительной влажности (φ = const). Нижняя кривая φ = 100% характеризует состояние воздуха, насыщенного водяным паром (кривая насыщения ).

Также на i-d диаграмме влажного воздуха строятся прямые линии изотерм (t = const), характеризующие процессы испарения влаги с учетом дополнительного количества теплоты, вносимой водой, имеющей температуру 0 о С.

В процессе испарения влаги энтальпия воздуха остается постоянной, так как теплота, отбираемая от воздуха для подсушивания материалов, возвращается обратно к нему вместе с испаренной влагой, то есть в уравнении:

i = i в + d*i п

Уменьшение первого слагаемого будет компенсироваться увеличением второго слагаемого. На i-d диаграмме этот процесс проходит по линии (i = const) и носит условное название процесса адиабатного испарения . Пределом охлаждения воздуха является адиабатная температура мокрого термометра, которую находят на диаграмме как температуру точки на пересечении линий (i = const) с кривой насыщения (φ = 100%).

Или другими словами, если из точки А (с координатами i = 72 кДж/кг, d = 12,5 г/ кг сух. возд., t = 40 °C, V = 0,905 м 3 /кг сух. воз. φ = 27%), выделяющей некоторое состояние влажного воздуха, провести вниз вертикальный луч d = const, то он будет представлять собой процесс охлаждения воздуха без изменения его влагосодержания; значение же относительной влажности φ при этом постепенно нарастает. При продолжении этого луча до пересечения с кривой φ = 100% (точка "В" с координатами i = 49 кДж/кг, d = 12,5 г/ кг сух. возд., t = 17,5 °C, V = 0,84 м 3 /кг сух. воз. j = 100%), мы получаем наименьшую температуру t p (она называется температурой точки росы ), при которой воздух с данным влагосодержанием d ещё способен сохранять пары в неконденсированном виде; дальнейшее понижение температуры приводит к выпадению влаги либо во взвешенное состояние (туман), либо в виде росы на поверхностях ограждений (стенах вагона, продуктах), или инея и снега (трубах испарителя холодильной машины).

Если воздух в состоянии А увлажнять без подвода или отвода тепла (например, с открытой водной поверхности), то процесс характеризующийся линией АС, будет происходить без изменения энтальпии (i = const). Температура t м на пересечении этой линии с кривой насыщения (точка "С" с координатами i = 72 кДж/кг, d = 19 г/ кг сух. возд., t = 24 °C, V = 0,87 м 3 /кг сух. воз. φ = 100%) и есть температура мокрого термометра .

С помощью i-d удобно анализировать процессы, происходящие при смешивании потоков влажного воздуха.

Также i-d диаграмма влажного воздуха широко применятся для расчетов параметров кондиционирования воздуха, под которым понимают совокупность средств и способов воздействия на температуру и влажность воздуха.

Для практических целей наиболее важно рассчитать время охлаждения груза с помощью имеющегося на борту судна оборудования. Поскольку возможности судовой установки по сжижению газов во многом определяют время стоянки судна в порту, знание этих возможностей позволит заранее планировать стояночное время, избегать ненужных простоев, а значит и претензий к судну.

Диаграмма Молье. которая приводится ниже (рис. 62), рассчитана только для пропана, но метод ее использова­ния для всех газов одинаков (рис. 63).

На диаграмме Молье используется логарифмическая шкала абсолютного давления log) - на вертикальной оси, на горизонтальной оси h - натуральная шкала удельной энтальпии (см. рис. 62, 63). Давление - в МПа, 0,1 МПа = 1 бар, поэтому в дальнейшем будем использовать бары. Удельная энтальпия измеряется п кДж/кг. В дальнейшем при решении практических задач будем постоянно использовать диаграмму Молье (но только ее схема­тичное изображение с тем, чтобы понять физику тепловых процессов, происходящих с грузом).

На диаграмме можно легко заметить своего рода «сачок», образованный кривыми. Границы этого «сачка» очерчи­вают пограничные кривые смены агрегатных состояний сжиженного газа, которые отражают переход ЖИДКОСТИ В насы­щенный пар. Все, что находится слева от «сачка», относится к переохлажденной жидкости, а все то, что справа от «сачка», - к перегретому пару (см. рис 63).

Пространство между этими кривыми представляет собой различные состояния смеси насыщенных паров пропана и жидкости, отражающие процесс фазового перехода. На ряде примеров рассмотрим практическое использование* диаграммы Молье.

Пример 1: Проведите линию, соответствующую давлению в 2 бара (0,2 МРа), через участок диаграммы, отражающий смену фаз (рис. 64).

Для этого определим энтальпию для 1 кг кипящего пропана при абсолютном давлении 2 бара.

Как уже отмечалось выше, кипящий жидкий пропан характеризуется левой кривой диаграммы. В нашем случае это будет точка А, Проведя из точки А вертикальную линию к шкале А, определим значение энтальпии, которое составит 460 кДж/кг. Это означает, что каждый килограмм пропана в данном состоянии (в точке кипения при давлении 2 бара) обладает энергией в 460 кДж. Следовательно, 10 кг пропана будут обладать энтальпией 4600 кДж.

Далее определим величину энтальпии для сухого насыщенного пара пропана при том же давлении (2 бара). Для этого проведем вертикальную линию из точки В до пересечения со шкалой энтальпии. В результате найдем, что максимальное значение энтальпии для 1 кг пропана в фазе насыщенных паров составит 870 кДж. Внутри диаграммы

* Для расчетов используются данные из термодинамических таблиц пропана (см. Приложения).

Рис. 64. К примеру 1 Рис. 65. К примеру 2

У
дельная энтальпия, кДж/кг (ккал/кг)

Рис. 63. Основные кривые диаграммы Молье

(рис. 65) линии, направленные из точки критического состояния газа вниз, отображают количество частей газа и жидкости в фазе перехода. Иными словами, 0,1 означает, что смесь содержит 1 часть паров газа и 9 частей жидкости. В точке пересечения давления насыщенных паров и этих кривых определим состав смеси (ее сухость или влажность). Температура перехода постоянна в течение всего процесса конденсации или парообразования. Если пропан находится в замкнутой системе (в грузовом танке), в ней присутствуют и жидкая и газообразная фазы груза. Можно определить температуру жидкости, зная давление паров, а давление паров - по температуре жидкости. Давление и температура связаны между собой, если жидкость и пар находятся в равновесном состоянии в замкнутой системе. Заметим, что кривые температуры, расположенные в левой части диаграммы, опускаются почти вертикально вниз, пересекают фазу парообразования в горизонтальном направлении и в правой части диаграммы опять опускаются вниз почти верти­кально.

П р и м е р 2: Предположим, что есть 1 кг пропана в стадии смены фаз (часть пропана жидкость, а часть - пар). Давление насыщенных паров составляет 7,5 бар, а энтальпия смеси (пар-жидкость) равна 635 кДж/кг.

Необходимо определить, какая часть пропана находится в жидкой фазе, а какая в газообразной. Отложим на диаграмме прежде всего известные величины: давление паров (7,5 бар) и энтальпию (635 кДж/кг). Далее определим точку пересечения давления и энтальпии - она лежит на кривой, которая обозначена 0,2. А это, в свою очередь, означает, что мы имеем пропан в стадии кипения, причем 2 (20%) части пропана находятся в газообразном состоя­нии, а 8 (80%) находятся в жидком.

Также можно определить манометрическое давление жидкости в танке, температура которой 60° F, или 15,5° С (для перевода температуры будем использовать таблицу термодинамических характеристик пропана из Приложения).

При этом необходимо помнить, что это давление меньше давления насыщенных паров (абсолютного давления) на величину атмосферного давления, равного 1,013 мбара. В дальнейшем для упрощения расчетов мы будем использо­вать значение атмосферного давления, равное 1 бару. В нашем случае давление насыщенных паров, или абсолютное давление, равно 7,5 бара, поэтому манометрическое давление в танке составит 6,5 бара.

Рис. 66. К примеру 3

Ранее уже упоминалось, что жидкость и пары в равновесном состоянии находятся в замкнутой системе при одной и той же температуре. Это верно, однако на практике можно заметить, что пары, находящиеся в верхней части танка (в куполе), имеют температуру значительно выше, чем температура жидкости. Это обусловлено нагревом танка. Однако такой нагрев не влияет на давление в танке, которое соответствует температуре жидкости (точнее, температуре на поверхности жидкости). Пары непосредственно над поверхностью жидкости имеют ту же самую температуру, что и сама жидкость на поверхности, где как раз и происходит смена фаз вещества.

Как видно из рис. 62-65, на диаграмме Молье кривые плотности направлены из левого нижнего угла диаграммы «сачка» в правый верхний угол. Значение плотности на диаграмме может быть дано в Ib/ft 3 . Для пересчета в СИ используется переводной коэффициент 16,02 (1,0 Ib/ft 3 = 16,02 кг/м 3).

Пример 3: В этом примере будем ис­пользовать кривые плотности. Требуется оп­ределить плотность перегретого пара пропана при абсолютном давлении 0,95 бара и темпе­ратуре 49° С (120° F).
Также определим удель­ную энтальпию этих паров.

Решение примера видно из рис 66.

В наших примерах используются термо­динамические характеристики одного газа - пропана.

В подобных расчетах для любого газа ме­няться будут только абсолютные величины термодинамических параметров, принцип же остается тот же самый для всех газов. В дальнейшем для упрощения, большей точности расчетов и сокращения времени бу­ дем использовать таблицы термодинамичес­ких свойств газов.

Практически вся инфор­мация, заложенная в диаграмму Молье, приведена в табличной форме.

С
помощью таблиц можно найти значе­ния параметров груза, но трудно. Рис. 67. К примеру 4 представить себе, как идет процесс. . охлаждения, если не использовать хотя бы схематичное отображе­ние диаграммы p - h .

Пример 4: В грузовом танке при тем­пературе -20" С находится пропан. Необхо­димо определить как можно точнее давление газа в танке при данной температуре. Далее необходимо определить плотность и энталь­пию паров и жидкости, а также разность"эн­тальпии между жидкостью и парами. Пары над поверхностью жидкости находятся в со­стоянии насыщения при той же температу­ре, что и сама жидкость. Атмосферное дав­ление составляет 980 млбар. Необходимо построить упрощенную диаграмму Молье и отобразить все параметры на ней.

Используя таблицу (см. Приложение 1), определяем давление насыщенных паров пропана. Абсолютное давление паров пропана при температуре -20° С равно 2,44526 бар. Давление в танке будет равно:

давлению в танке (избыточное или манометрическое)

1,46526 бара

атмосферное давлени = 0,980 бара =

Абсолютное _ давление

2,44526 бара

В колонке, соответствующей плотности жидкости, находим, что плотность жидкого пропана при -20° С составит 554,48 кг/м 3 . Далее находим в соответствующей колонке плотность насыщенных паров, которая равна 5,60 кг/м 3 . Энтальпия жидкости составит 476,2 кДж/кг, а паров - 876,8 кДж/кг. Соответственно разность энтальпии составит (876,8 - 476,2) = 400,6 кДж/кг.

Несколько позже рассмотрим использование диаграммы Молье в практических расчетах для определения работы установок повторного сжижения.

I-d-диаграмма влажного воздуха была разработана русским ученым, профессором Л.К. Рамзиным в 1918 г. На западе аналогом I-d-диаграммы является диаграмма Молье или психрометрическая диаграмма. I-d-диаграмма применяется в расчетах систем кондиционирования воздуха, вентиляции и отопления и позволяет быстро определить все параметры воздухообмена в помещении.

I-d-диаграмма влажного воздуха графически связывает все параметры, определяющие тепловлажностное состояние воздуха: энтальпию, влагосодержание, температуру, относительную влажность, парциальное давление водяных паров. Использование диаграммы позволяет наглядно отобразить вентиляционный процесс, избегая сложных вычислений по формулам.

Основные свойства влажного воздуха

Окружающий нас атмосферный воздух является смесью сухого воздуха с водяным паром. Эту смесь называют влажным воздухом. Влажный воздух оценивают по следующим основным параметрам:

  • Температура воздуха по сухому термометру tc, °C - характеризует степень его нагрева;
  • Температура воздуха по мокрому термометру tм, °C - температура, до которой нужно охладить воздух, чтобы он стал насыщенным при сохранении начальной энтальпии воздуха;
  • Температура точки росы воздуха tp, °C - температура, до которой нужно охладить ненасыщенный воздух, чтобы он стал насыщенным при сохранении постоянного влагосодержания;
  • Влагосодержание воздуха d, г/кг – это количество водяного пара в г (или кг), приходящееся на 1 кг сухой части влажного воздуха;
  • Относительная влажность воздуха j, % – характеризует степень насыщенности воздуха водяными парами. Это отношение массы водяных паров, содержащихся в воздухе, к максимально возможной их массе в воздухе при тех же условиях, то есть температуре и давлении, и выраженное в процентах;
  • Насыщенное состояние влажного воздуха – состояние, при котором воздух насыщен водяными парами до предела, для него j = 100 %;
  • Абсолютная влажность воздуха е, кг/м 3 — это количество водяных паров в г, содержащихся в 1 м 3 влажного воздуха. Численно абсолютная влажность воздуха равна плотности влажного воздуха;
  • Удельная энтальпия влажного воздуха I, кдж/кг – количество теплоты, необходимое для нагревания от 0 °С до данной температуры такого количества влажного воздуха, сухая часть которого имеет массу 1 кг. Энтальпия влажного воздуха складывается из энтальпии сухой его части и энтальпии водяных паров;
  • Удельная теплоемкость влажного воздуха с, кДж/(кг.К) – теплота, которую надо затратить на один килограмм влажного воздуха, чтобы повысить температуру его на один градус Кельвина;
  • Парциальное давление водяных паров Рп, Па – давление, под которым находятся водяные пары в влажном воздухе;
  • Полное барометрическое давление Рб, Па – равно сумме парциальных давлений водяного пара и сухого воздуха (согласно закону Дальтона).

Описание I-d-диаграммы

По оси ординат диаграммы отложены значения энтальпии I, кДж/кг сухой части воздуха, по оси абсцисс, направленной под углом 135° к оси I, отложены значения влагосодержания d, г/кг сухой части воздуха. Поле диаграммы разбито линиями постоянных значений энтальпии I = const и влагосодержания d = const. На него нанесены также линии постоянных значений температуры t = const, которые не параллельны между собой: чем выше температура влажного воздуха, тем больше отклоняются вверх его изотермы. Кроме линий постоянных значений I, d, t, на поле диаграммы нанесены линии постоянных значений относительной влажности воздуха φ = const. В нижней части I-d-диаграммы расположена кривая, имеющая самостоятельную ось ординат. Она связывает влагосодержание d, г/кг, с упругостью водяного пара Рп, кПа. Ось ординат этого графика является шкалой парциального давления водяного пара Рп. Все поле диаграммы разделено линией j = 100 % на две части. Выше этой линии расположена область ненасыщенного влажного воздуха. Линия j = 100 % соответствует состоянию воздуха, насыщенного водяными парами. Ниже расположена область пересыщенного состояния воздуха (область тумана). Каждая точка на I-d-диаграмме соответствует определенному тепловлажностному состоянию Линия на I-d-диаграмме соответствует процессу тепловлажностной обработки воздуха. Общий вид I-d-диаграммы влажного воздуха представлен ниже во вложенном файле PDF пригоден для печати в форматах А3 и А4.


Построение процессов обработки воздуха в системах кондиционирования и вентиляции на I-d-диаграмме.

Процессы нагрева, охлаждения и смешивания воздуха

На I-d-диаграмме влажного воздуха процессы нагрева и охлаждения воздуха изображаются лучами по линии d-const (рис. 2).

Рис. 2. Процессы сухого нагрева и охлаждения воздуха на I-d-диаграмме:

  • В_1, В_2,– сухой нагрев;
  • В_1, В_3 – сухое охлаждение;
  • В_1, В_4, В_5 – охлаждение с осушением воздуха.

Процессы сухого нагрева и сухого охлаждения воздуха на практике осуществляют, применяя теплообменники (воздухонагреватели, калориферы, воздухоохладители).

Если влажный воздух в теплообменнике охлаждается ниже точки росы, то процесс охлаждения сопровождается выпадением конденсата из воздуха на поверхности теплообменника, и охлаждение воздуха сопровождается его осушкой.

Учитывая, что является основным объектом вентиляционного процесса, в области вентиляции приходится часто определять те или другие параметры воздуха. Чтобы избежать многочисленных вычислений, их определяют обычно по специальной диаграмме, которая носит название Id диаграммы. Она позволяет быстро определить все параметры воздуха по двум известным. Использование диаграммы позволяет избежать вычислений по формулам и наглядно отобразить вентиляционный процесс. Пример Id диаграммы приведен на следующей странице. Аналогом Id диаграммы на западе является диаграмма Молье или психрометрическая диаграмма.

Оформление диаграммы в принципе может быть несколько различным. Типовая общая схема Id диаграммы показана ниже на рисунке 3.1. Диаграмма представляет из себя рабочее поле в косоугольной системе координат Id, на котором нанесено несколько координатных сеток и по периметру диаграммы – вспомогательные шкалы. Шкала влагосодержаний обычно располагается по нижней кромке диаграммы, при этом линии постоянных влагосодержаний представляют вертикальные прямые. Линии постоянных представляют параллельные прямые, обычно идущие под углом 135° к вертикальным линиям влагосодержаний (в принципе, углы между линиями энтальпии и влагосодержания может быть и другим). Косоугольная система координат выбрана для того, чтобы увеличить рабочее поле диаграммы. В такой системе координат линии постоянных температур представляют из себя прямые линии, идущие под небольшим наклоном к горизонтали и слегка расходящиеся веером.

Рабочее поле диаграммы ограничено кривыми линиями равных относительных влажностей 0% и 100%, между которыми нанесены линии других значений равных относительных влажностей с шагом 10%.

Шкала температур обычно располагается по левой кромке рабочего поля диаграммы. Значения энтальпий воздуха нанесены обычно под кривой Ф= 100. Значения парциальных давлений иногда наносят по верхней кромке рабочего поля, иногда по нижней кромке под шкалой влагосодержаний, иногда по правой кромке. В последнем случае на диаграмме добавочно строят вспомогательную кривую парциальных давлений.

Определение параметров влажного воздуха на Id диаграмме.

Точка на диаграмме отражает некое состояние воздуха, а линия – процесс изменения состояния. Определение параметров воздуха, имеющего некое состояние, отображаемое точкой А, показано на рисунке 3.1.