Вычисление вероятности событий с несколькими возможными исходами. Все уже случалось и снова случится

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность всех событий. А вероятность событий, которые мы считаем неблагоприятными (когда вытащим красный фломастер) - .

Таким образом, вероятность вытащить НЕ красный фломастер - .

Ответ:

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Что должно произойти? Мы должны вытащить (красный ИЛИ зеленый).

Теперь понятно, складываем вероятности этих событий:

Ответ:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Ответ:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

  1. В колоде карты каждого достоинства, значит:
  2. События зависимы, так как после первой вытащенной карты количество карт в колоде уменьшилось (как и количество «картинок»). Всего вальтов, дам, королей и тузов в колоде изначально, а значит вероятность первой картой вытащить «картинку»:

    Поскольку мы убираем из колоды первую карту, то значит в колоде осталось уже карта, из них картинок. Вероятность второй картой вытащить картинку:

    Поскольку нас интересует ситуация, когда мы достаем из колоды: «картинку» И «картинку», то нужно перемножать вероятности:

    Ответ:

  3. После первой вытащенной карты, количество карт в колоде уменьшится.Таким образом, нам подходит два варианта:
    1) Первой картой вытаскиваем Туза, второй - валета, даму или короля
    2) Первой картой вытаскиваем валета, даму или короля, второй - туза.Т.е. (туз и (валет или дама или король)) или ((валет или дама или король) и туз). Не забываем про уменьшение количества карт в колоде!

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. темы и ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

  1. (Выпал орел и выпал орел) или (выпала решка и выпала решка): .
  2. Какие есть варианты? и. Тогда:
    Выпало (и) или (и) или (и): .

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

Ой, как же не хочется перебирать варианты… Орел-решка-решка, Орел-орел-решка, … А и не надо! Вспоминаем про полную вероятность. Вспомнил? Какова вероятность, что орел не выпадет ни разу ? Это же просто: все время летят решки, значит.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...

Вечер постепенно окутывал величественный замок Змиулан. Постепенно зажигались в коридорах факелы, ученики спешили разойтись по комнатам. И вот, когда коридоры уже пустовали, из-за угла вышел человек: дорогой костюм чёрного цвета идеально сидел на его подтянутой фигуре, русые волосы были зачесаны назад, глаза фисташкового цвета смотрели только вперёд равнодушным взглядом. Нортон Огнев, а это был он, подошел к кабинету Великого Духа Осталы. Постучав и получив разрешение, мужчина вошел в помещение. -Итак, зачем ты пришел, Нортон? - спиной к отцу Василисы, смотря в окно, стоял сам хозяин замка. Равнодушие не исчезло с лица Огнева, но он внутренне напрягся. -Господин Астрагор, мне нужно отправиться в Черновод на несколько дней, - глава Драгоциев развернулся. -Как я понимаю, ты поедешь не один? - Нортон-старший медленно кивнул: -Да, господин Астрагор. Если вы не против, я возьму с собой свою дочь, Фэша и Захарру. -А зачем тебе, Нортон, брать с собой моих племянников? - с неким интересом взглянул на Огнева глава Драгоциев. -Василиса попросила, - будто нехотя ответил Нортон-старший. Астрагор задумчиво уставился на пламя в камине. Огнев терпеливо ожидал ответа… *** Ночь окутала величественный замок звездным полотном. Легкий ветерок шелестел листвой сада. В Зеленой комнате уже готовилась ко сну Василиса. -Ох, как же давно я тут не была… - протянула девушка, оглядывая комнату. Она уже даже не помнила, когда в последний раз была здесь, но видела, что всё находилось на своих местах. Неожиданно в распахнутое окно влетел парень. Огнева удивленно взглянула на нежданного гостя. Спрятав черные крылья, темноволосый улыбнулся хозяйке комнаты: -Привет совам! -Ты меня напугал! - воскликнула девушка, раздраженно смотря на парня. -Ой, да ладно тебе, - хмыкнул гость. - Думаю, ты всегда меня пугаться будешь. -Не говори глупостей! Стану я бояться такого заносчивого парня вроде тебя, - раздраженно проговорила Василиса. - Кстати, Фэш, а чего ты прилетел, тем более, так поздно? Опять не спится? -Ага, - кивнул Драгоций. - Решил себе экскурсию по Черноводу устроить… Но одному гулять не очень весело, да и опасно. По незнакомому замку всё-таки, - хитро блеснул глазами Фэш. -Предлагаешь, чтобы я провела тебе экскурсию? - недоуменно взглянула на друга Василиса. -А почему бы и нет? Ты же здесь всё знаешь? - вопросительно поднял бровь брюнет. -Почти, - уклончиво ответила рыжеволосая. -Ну вот и хорошо, - Драгоций направился к двери. Огневой ничего не осталось сделать, как последовать за ним. Ребята шли по темным коридорам, начасовав светильники. Василиса рассказывала Фэшу, что помнит в этом замке. Тот внимательно её слушал, иногда перебивая или ехидно фыркая на то или иное предложение. Вскоре ему наскучило просто ходить и слушать болтовню, и он, кое-что вспомнив, задал вопрос: -Кстати, а что там за башня, которую мы видели, когда в карете ехали? -Ты какую имеешь ввиду? - задумчиво спросила Огнева. -Кажется, Западную, - протянул Драгоций. -А, эту, - тут же поняла рыжеволосая. - У нас ее прозывают Одинокая, там когда-то содержались узники. -А давай заглянем туда? - в льдисто-голубых глазах брюнета блеснул азарт. -Ну, не знаю… - неуверенно протянула Василиса. -Боишься? - усмехнулся Драгоций. Как Фэш и предполагал, ее удалось взять на слабо: лицо девушки вспыхнуло, и она сжала кулаки: -Идем, - и Василиса повела довольно улыбнувшегося брюнета к этой башне. Без препятствий открыв дверь, ребята вошли в помещение. Дверь вскоре захлопнулась. Фэш подошел к распахнутому настежь окну и запрыгнул на подоконник, вдохнув морской бодрящий запах: -Эх, хорошо… - затем повернулся к рыжеволосой. - Давай, садись, - и стукнул ладонью по месту рядом с собой. Девушка тут же пристроилась рядом. Полная луна светила в вышине, а внизу волновалось море. Накатывали волна за волной, разбиваясь о скалы. -Какая яркая луна, - взглянула вновь на небо Василиса. -А у меня песня есть про луну. Давно еще сочинил, - вдруг сказал Фэш. -Так ты петь умеешь? - удивленно взглянула на Драгоция рыжеволосая. Тот молча кивнул. -А что, не веришь? - брюнет приблизился к лицу Огневой, с усмешкой глядя в глаза собеседницы. Заметил, что щеки её порозовели, и улыбка стала шире. -Да нет, просто… - запнулась покрасневшая Василиса, отведя взгляд от льдисто-голубых глаз, в которых отражался свет луны. - Просто не было возможности подтвердить твои слова, - она вновь взглянула в эти глаза. Фэш стал медленно наклоняться к рыжеволосой. Та пошла ему навстречу. Между их лицами остаются считанные миллиметры. Огнева уже чувствовала легкий ветерок выдохов на своих губах. Их губы почти соприкаснулись, и… -Ох, как же это мило! - Василиса тут же отстранилась от Драгоция и залилась румянцем похлеще прежнего. Фэш повернулся. Пред его ясные очи предстала… -Захарра?! - воскликнули удивленно двое голубков. -Что ты здесь делаешь? - раздраженно взглянул на сестру брюнет. -Да я видела, как ты летел куда-то, решила узнать. Вышла, смотрю, вы идете, болтаете. Главное, меня не замечаете. Ну, я за вами и пошла, - выложила всё куцехвостая. -Подлючая родная кровь… - пробурчал Фэш, слез с подоконника и ушел к себе. Василиса последовала его примеру. Захарра мигом прошмыгнула в коридор за Огневой и тоже вернулась в свою комнату…

Для построения дерева вероятностей прежде всего необходимо нарисовать са­мо дерево, затем записать на рисунке всю известную для данной задачи инфор­мацию и, наконец, воспользоваться основными правилами, чтобы вычислить не­достающие числа и закончить дерево.

1. Вероятности указываются в каждой из конечных точек и обводятся кружоч­ками. На каждом уровне дерева сумма этих вероятностей должна равняться 1 (или 100%). Так, например, на рис. 6.5.1 сумма вероятностей на первом уров­не составляет 0,20 + 0,80 = 1,00 и на втором уровне - 0,03 + 0,17 + 0,56 + 0,24 = 1,00. Это правило помогает заполнить один пустой кружок в столбце, если значения всех остальных вероятностей этого уровня известны.

Рис. 6.5.1

2. Условные вероятности указываются рядом с каждой из ветвей (кроме,
возможно, ветвей первого уровня). Для каждой из групп ветвей, выходящих из одной точки, сумма этих вероятностей также равна 1 (или 100%).
Например, на рис. 6.5.1 для первой группы ветвей получаем 0,15 + 0,85 =
1,00 и для второй группы - 0,70 + 0,30 = 1,00. Это правило позволяет
вычислить одно неизвестное значение условной вероятности в группе вет­вей, исходящих из одной точки.

3. Обведенная кругом в начале ветви вероятность, умноженная на условную
вероятность рядом с этой ветвью, дает вероятность, записанную в круге в
конце ветви. Например, на рис. 6.5.1 для верхней ведущей вправо ветви
имеем 0,20 х 0,15 = 0,03, для следующей ветви - 0,20 х 0,85 = 0,17; аналогичные соотношения выполняются и для других двух ветвей. Это правило можно использовать для вычисления одного неизвестного значения
вероятности из трех, соответствующих некоторой ветви.

4. Записанное в круге значение вероятности равно сумме обведенных кружками вероятностей на концах всех ветвей, выходящих из этого круга
вправо. Так, например, для рис. 6.5.1 из круга со значением 0,20 выходят
две ветви, на концах которых находятся обведенные кружками вероятности, сумма которых равна этому значению: 0,03 + 0,17 = 0,20. Это правило позволяет найти одно неизвестное значение вероятности в группе,
включающей эту вероятность и все вероятности на концах ветвей дерева,
выходящих из соответствующего круга.

Используя эти правила можно, зная все, кроме одного значения вероятности для некоторой ветви или на некотором уровне, находить это неизвестное значение.

37. Какая выборка называется репрезентативной? Каким образом можно извлечь репрезентативную выборку?

Репрезентативность - это способность выборки представлять изучаемую совокупность. Чем точнее состав выборки представляет совокупность по изучаемым вопросам, тем выше ее репрезентативность.



Репрезентативная выборка (representative sample) - одно из ключевых понятий анализа данных. Репрезентативная выборка - это выборка из генеральной совокупности с распределением F (x ), представляющая основные особенности генеральной совокупности. Например, если в городе проживает 100 000 человек, половина из которых мужчины и половина женщины, то выборка 1000 человек из которых 10 мужчин и 990 женщин, конечно, не будет репрезентативной. Построенный на ее основе опрос общественного мнения, конечно, будет содержать смещение оценок и приводит к фальсификации результатов.

Необходимым условием построения репрезентативной выборки является равная вероятность включения в нее каждого элемента генеральной совокупности.

Выборочная (эмпирическая) функция распределения дает при большом объеме выборки достаточно хорошее представление о функции распределения F (x ) исходной генеральной совокупности.

Ведущий принцип, лежащий в основе такой процедуры, - это принцип рандомизации, случайности. Выборка называется случайной (иногда мы будем говорить простая случайная или чистая случайная выборка), если выполняется два условия. Во-первых, выборка должна быть построена таким образом, чтобы любой человек или объект в пределах совокупности имел равные возможности быть отобранным для анализа. Во-вторых, выборка должна быть сформирована так, чтобы любое сочетание из n объектов (где n - просто количество объектов, или случаев, в выборке) имело равные возможности быть отобранным для анализа.

При исследовании совокупностей, которые слишком велики, для того чтобы можно было осуществить настоящую лотерею, часто используются простые случайные выборки. Выписать имена нескольких сотен тысяч объектов, сложить их в барабан и выбрать несколько тысяч - это все же нелегкая работа. В таких случаях используется другой, однако столь же надежный способ. Каждому объекту в совокупности присваивается номер. Последовательность чисел в таких таблицах обычно задается компьютерной программой, называемой генератором случайных чисел, который, в сущности, помещает в барабан большое количество чисел, случайным образом вытаскивает их и выпечатывает в порядке получения. Иными словами, имеет место все тот же процесс, характерный для лотереи, однако компьютер, используя не имена, а числа, осуществляет универсальный выбор. Этим выбором можно пользоваться, просто присвоив каждому из наших объектов номер.

Таблица случайных чисел типа той, может использоваться несколькими разными способами, и в каждом случае необходимо принять три Решения. Во-первых, следует решить, сколько разрядов Мы будем использовать, во-вторых, необходимо разработать решающее правило для их использования; в-третьих нужно выбрать исходную точку и способ прохождения по таблице.

Как только это сделано, мы должны разработать правило, которое бы связывало числа в таблице с номерами наших объектов. Здесь существуют две возможности. Самый простой способ (хотя и не обязательно самый правильный) - использовать лишь те числа, которые попадают в число номеров, приписанных нашим объектам. Так, если мы имеем совокупность, состоящую из 250 объектов (и, таким образом, используем трехзначные числа), и решаем начать с левого верхнего угла таблицы и двигаться вниз по столбцам, мы включим в нашу выборку объекты с номерами 100, 084 и 128 и пропустим числа 375 и 990, не соответствующие нашим объектам. Этот процесс будет продолжаться до тех пор, пока не будет определено число объектов, нужных для нашей выборки.

Более трудоемкая, однако методически более правильная процедура основывается на положении, что для сохранения случайности, характерной для таблицы, должно быть использовано каждое число данной размерности (например, каждое трехзначное число). Следуя данной логике и вновь имея дело с совокупностью из 250 объектов, мы должны разбить область трехзначных чисел от 000 до 999 на 250 одинаковых промежутков. Поскольку таких чисел 1000, мы делим 1000 на 250 и находим, что каждая из частей содержит четыре числа. Таким образом, числа таблицы от 000 до 003 будут соответствовать объекту от 004 до 007 - объекту 2 и т.д. Теперь, чтобы установить, какой номер объекта соответствует числу таблицы, следует разделить трехзначное число из таблицы и округлить до ближайшего целого числа.

И наконец, мы должны выбрать в таблице исходную точку и способ прохождения. Исходной точкой может быть верхний левый угол (как в предыдущем примере), нижний правый угол, левый край второй строки или любое другое место. Этот выбор абсолютно произволен. Однако, работая с таблицей, мы должны действовать систематически. Мы могли бы взять три первых знака из каждой пятизначной последовательности, три средних знака, три последних знака или даже первый, второй и четвертый знаки. (Из первой пятизначной последовательности с помощью этих различных процедур получаются, соответственно, числа 100, 009, 097 и 109.) Мы могли бы применить эти процедуры в направлении справа налево, получив 790, 900, 001 и 791. Мы могли бы идти вдоль рядов, рассматривая поочередно каждую следующую цифру и игнорируя разбиение на пятерки (для первого ряда будут получены числа 100, 973, 253, 376 и 520). Мы могли бы иметь дело лишь с каждой третьей группой цифр (например, с 10097, 99019, 04805, 99970). Существует множество самых разнообразных возможностей, и каждая следующая ничуть не хуже предыдущей. Однако как только мы приняли решение о том, или ином способе работы, мы должны систематически следовать ему, чтобы в максимальной степени соблюдать случайность элементов в таблице.

38. Какой интервал мы называем доверительным?

Доверительный интервал - это допустимое отклонение наблюдаемых значений от истинных. Размер этого допущения определяется исследователем с учетом требований к точности информации. Если увеличивается допустимая ошибка, размер выборки уменьшается, даже если уровень доверительной вероятности останется равным 95%.

Доверительный интервал показывает, в каком диапазоне расположатся результаты выборочных наблюдений (опросов). Если мы проведем 100 одинаковых опросов в одинаковых выборках из единой генеральной совокупности (например, 100 выборок по 1000 человек в каждой в городе с населением 5 миллионов человек), то при 95%-й доверительной вероятности, 95 из 100 результатов попадут в пределы доверительного интервала (например, от 28% до 32% при истинном значении 30%).

Например, истинное количество курящих жителей города составляет 30%. Если мы 100 раз подряд выберем по 1000 человек и в этих выборках зададим вопрос "курите ли Вы?", в 95 из этих 100 выборок при 2%-м доверительном интервале значение составит от 28% до 32%.

39 Что называется уровнем доверительности (confidence level)?

Доверительный уровень отражает количество данных, необходимых оценщику для того, чтобы утверждать, что обследуемая программа имеет должный эффект. В общественных науках традиционно используется 95% доверительный уровень. Однако для большинства общественных программ уровень в 95% является излишним. Доверительный уровень в интервале 80-90% является достаточным для адекватной оценки программы. Таким образом, можно уменьшить размер репрезентативной группы, тем самым уменьшив и затраты на проведение оценки.

В процессе статистической оценки проверяется нулевая гипотеза, которая состоит в том, что программа не имела должного эффекта. Если полученные результаты значительно отличаются от изначальных предположений о правильности нулевой гипотезы, то последняя отклоняется.

40. Какой из двух доверительных интервалов больше: двусторонний 99% или двусторонний 95%? Объясните.

Двусторонний доверительный интервал 99% больше, чем 95%, так как в него попадает больше значений. Док-во:

С помощью z-значений можно точнее оценить доверительный интервал и определить общую форму доверительного интервала. Точная формулировка доверительного интервала для выборочного среднего имеет следующий вид:

Таким образом, для случайной выборки 25 наблюдений, удовлетворяющих нормальному распределению, с доверительный интервал выборочного среднего имеет следующий вид:

Таким образом, на 95% можно быть уверенным, что значение лежит в пределах ±1,568 единицы от выборочного среднего. С помощью такого же метода можно определить, что 99%-ный доверительный интервал лежит в пределах ±2,0608 единицы от выборочного среднего

значение Таким образом, имеем и отсюда , Аналогично получаем нижний предел, который равен

Согласно многомировой интерпретации квантовой физики, мы живем в бесконечной сети альтернативных вселенных. Это серьезное заявление, которое несет определенные и крайне серьезные научные, философские и экзистенциальные последствия. Давайте рассмотрим десять из них.

Согласно гипотезе создателя квантовой механики Хью Эверетта, мы живем во Вселенной, точнее в мультивселенной, в которой постоянно рождается и ответвляется множество последовательных миров, в каждом из которых присутствует другая версия вас.

Квантовые физики использовали многомировую интерпретацию, чтобы устранить неприятный недостаток копенгагенской интерпретации, а именно утверждение, что ненаблюдаемое явление может существовать в двух состояниях. То есть вместо того, чтобы утверждать, что одновременно жив и мертв, многомировая интерпретация гласит, что кот просто «разветвился» в разных мирах: в одном он жив, в другом мертв.

Спустя 60 лет после своего представления, многомировая интерпретация остается довольно спорным вопросом. В опросе 2013 года, проведенном среди квантовых физиков, только пятая часть указала, что приветствует многомировую интерпретацию (для сравнения: копенгагенской интерпретации придерживается 42% физиков). Тем не менее среди сторонников мультиверса есть весьма именитые ученые из области квантовой физики - Дэвид Дойч, Скотт Ааронсон, Шон Кэрролл.

Независимо от того, в каком состоянии пребывает эта теория, крайне интересно размышлять о ее последствиях.

Мы живем в мультивселенной гигантских размеров

Космологи принимают факт того, что наблюдаемый нами мир один, как сам собой разумеющийся. Размышления о множественной вселенной долгое время считались научной ересью, но вероятность того, что это правда, растет все больше и больше. Физики и метафизики, космологи, антропологи, квантовые фанатики - все начинают задумываться об этом.

Основным утверждением многомировой интерпретации является то, что все сущее состоит из квантовой суперпозиции невообразимо большого - или бесконечного - числа вселенных. Если эта интерпретация является верной, должно быть совершенно поразительное количество альтернативных миров.

Цельность вашей жизни -иллюзия

ММИ также нарушает наше представление о личности. Мы все воспринимаем свою жизнь как единое и цельное путешествие через пространство и время. В действительности мы представляем собой экспоненциально растущий набор событий, которые разветвляются от момента к моменту. В результате мы должны думать о себе не как о личности, а как о дробной части.

Причина этой иллюзии в том, что множественный опыт пережить невозможно, поэтому мы остаемся с осознанием того, что мы - один человек. Но это не означает, что наш опыт реальности подлинный или реальный. Мы должны признать - посредством ММИ - что наши жизни не являются в точности такими, какими кажутся.

Существует множество версий вас

Если ММИ верна, существует (или бесконечное) количество ваших версий, каждая из которых воспринимает мир как отдельная личность и не знает о существовании других версий. Следовательно, сам объем альтернативных жизненных путей чрезвычайно велик. С самого рождения вы - или то, что вам кажется вами - разветвлялись в разных мирах. Полный набор вас - это массивная корневая система, которая разрастается экспоненциально, и каждый корень представляет новую жизнь.

Поскольку ММИ подразумевает постоянную изменчивость, зависимость от вероятностей, каждый новый экземпляр вас должен быть отличным, наблюдая мир, в котором произошел альтернативный исход событий вашей жизни. Следовательно, существуют миры, в которых вы до сих пор живете с бывшими, являетесь более или менее успешным, уже умерли или пережили смерть близких, которые живы в настоящем мире. Могут существовать даже злобные версии вас, где вы террристы или убийцы. Возможности практически безграничны, пока не нарушаются основы физики.

У вас все еще есть свобода воли

Учитывая, что все возможные решения будут приниматься различными версиями вас, ММИ довольно трудно объяснить вопрос свободы воли. Если все варианты выбора уже сделаны в альтернативных мирах, зачем тогда проходить через все неприятности, взвешивая все за и против, принимая решения? Коллективная судьба ваших альтер-эго уже предопределена, выбор сделан за вас.

Эксперт ММИ Майкл Клайв-Прайс указывает, что хотя все решения уже приняты, некоторые принимаются чаще остальных. Другими словами, каждая ветвь решения обладает собственным «весом», который влияет на обычные законы квантовой статистики.

Кроме того, ММИ означала бы определенный недетерминизм бытия, хотя и неинтуитивным образом. Всякий раз, когда мы задаемся вопросом: «Мог ли я принять другое решение или поступить иначе?», ММИ отвечает, что да, конечно. И не только вы, но и альтернативная версия вас тоже могла. А вот почему вы выбрали этот вариант, добились тех или иных результатов, все это сводится к влиянию квантовых событий на классические объекты - в том числе и на размышления в вашей голове.

Где-то там могут существовать крайне странные миры

ММИ обязательно приводит к весьма странным возможностям. Опять же, все точки разветвления возможны ровно до тех пор, пока вы не нарушаете законы физики. Важно отметить, однако, что учитывая весь объем всевозможных миров, более вероятно, что вы окажетесь в наиболее возможном и рациональном из миров, поскольку они возникают с высокой частотой.

Но есть и миры, в которых происходят крайне странные вещи. К примеру, кто-то подбрасывает монетку 1000 раз, и вместе с этим возникает мир, в котором он выбрасывает решку 1000 раз подряд.

Также существуют миры, в которых кто-то будет угадывать абсолютно все прогнозы спортивных матчей. Миры, в которых человек без музыкального образования, впервые увидев фортепиано, сыграет 3-й фортепианный концерт Рахманинова, как сыграл бы сам маэстро. Шансы, однако, такого события ничтожно малы и выходят за пределы астрономических вероятностей, хотя, конечно, в числе бесконечно возможных вариантов имеются.


Впрочем, именно этот пункт скептики выделяют как самый острый, сводящий рациональность ММИ к минимуму.

Вы в некотором роде бессмертны

Этот мысленный эксперимент называется «квантовое самоубийство». Представьте себе ситуацию, в которой человек играет в русскую рулетку, в которой полбарабана револьвера заложено пулями. В такой суперпозиции каждый поворот барабана будет сбрасывать шансы на самоубийство человека до 50/50. Но ММИ говорит нам, что должен быть мир, в котором человек никогда не застрелит себя даже после 50 поворотов барабана. Хотя шансы, что это случится, стремятся к нулю, но где-нибудь это да должно произойти.

Что любопытно, физик Макс Тегмарк говорит, что данный эксперимент может служить доказательством ММИ, только потребует смерти множества людей, прежде чем один счастливчик доберется до финиша.

Другой взгляд на квантовое бессмертие утверждает, что версия нас самих всегда должна существовать, чтобы наблюдать Вселенную. Пол Халперн, автор «кота Шредингера», выразил это так:

«Что такое выживание человека? Все мы - совокупность частиц, установленная квантовыми правилами на глубочайшем уровне. Если каждый раз, когда происходит квантовый переход, наши тела и сознания раскалываются, будут копии, которые переживают каждый возможный результат, в том числе и тот, который определяет, жить нам или умереть. Предположим, что в одном случае конкретный набор квантовых переходов приводит к неправильному распределению клеток и вызывает смертельную форму рака. Для каждого перехода всегда будет альтернатива, которая не приводит к раку. Получается, всегда будут ветки с выжившими. Добавим к этому допущение, что наше сознание всегда будет пребывать только в живых копиях, и мы сможем выжить в любом числе потенциально опасных событий, связанных с квантовыми переходами».

Может быть возможной связь между параллельными мирами

В 1995 году квантовый физик Райнер Плага предложил экспериментально проверить ММИ, описав процедуру «межмирового» обмена информацией и энергией посредством «слабой связи».

С помощью стандартного квантово-оптического оборудования одиночный ион можно изолировать от окружения в ионной ловушке. Затем можно провести квантово-механическое измерение с двумя отдельными результатами на примере другой системы, тем самым создав два параллельных мира. В зависимости от результата, ион будет возбужден только в одном из этих параллельных миров, прежде чем произойдет декогеренция иона в процессе взаимодействия окружающей средой. Плага утверждает, что мы могли бы обнаружить это возбуждение в другом параллельном мире, что обеспечило бы ММИ доказательствами - и предоставило бы возможный способ послать весточку в параллельную реальность.

Никаких парадоксов путешествий во времени

Все просто: наличие альтернативных миров будет означать отсутствие единой шкалы времени, по которой можно перемещаться.


Если кто-то отправится назад во времени, это будет означать перемещение в совершенно новые временные парадигмы. Соответственно, в ММИ парадоксы вроде возвращения в прошлое и убийства дедушки просто не находят места.

Все уже случалось и снова случится

Самое интересное следствие из бесконечного числа миров заключается в том, что все уже произошло. Более того, произойдет еще и бесконечное число раз.


По материалам IO9

1. Ω = {11,12,13,14,15,16, 21, 22,..., 66},

2. Ω = {2,3,4,5,6, 7,8,9,10,11,12}

3. ● A = {16,61,34, 43, 25, 52};

● B = {11,12, 21,13,31,14, 41,15, 51,16, 61}

● C = {12, 21,36,63,45, 54,33,15, 51, 24,42,66}.

D = {СУММА ОЧКОВ РАВНА 2 ИЛИ 3 };

E = {СУММА ОЧКОВ РАВНА 10}.

Описать событие: С = {ЦЕПЬ ЗAМКНУТA} для каждого случая.

Решение. Введем обозначения: событие A - контакт 1 за­мкнут; событие В - контакт 2 замкнут; событие С - цепь замкнута, лампочка горит.

1. Для параллельного соединения цепь замкнута, когда хотя бы один из контактов замкнут, поэтому С = A + В ;

2. Для последовательного соединения цепь замкнута, ко­гда замкнуты оба контакта, поэтому С = A · В .

Задача. 1.1.4 Составлены две электрические схемы:

Событие A - цепь замкнута, событие A i - I –й кон­такт замкнут. Для какой из них справедливо соотноше­ние

A1 · (A2 + A3 · A4) · A5 = A?

Решение . Для первой схемы A = A1 · (A2 · A3 + A4 · A5), так как параллельному соединению соответствует сумма собы­тий, а последовательному соединению - произведение событий. Для второй схемы A = A 1 (A2 + A3 A4 A5). Сле­довательно, данное соотношение справедливо для второй схемы.

Задача. 1.1.5 Упростить выражение (A + B)(B + C)(C+ A).

Решение. Воспользуемся свойствами операций сложения и умножения событий.

(A + B)(B + C)(A + C) =

(AB + AC + B B + BC)(A + C) =

= (AB + AC + B + BC)(A + C) =

(AB + AC + B)(A + C) = (B + AC)(A + C) =

= BA + BC + ACA + ACC = B A + BC + AC.

Задача. 1.1.6 Доказать, что события A, AB и A+B Обра­зуют полную группу.

Решение. При решении задачи воспользуемся свойства­ми операций над событиями. В начале покажем, что эти события попарно несовместны.

A теперь покажем, что сумма этих событий дает простран­ство элементарных событий.

Задача. 1.1.7 С помощью схемы Эйлера–Венна проверить правило де-Моргана:

А) Заштриховано событие AB.

Б) Событие A - вертикальная штриховка; событие B - горизонтальная штриховка. Событие

{A+B} - заштрихованная область.

Из сопоставления рисунков а) и в) следует:

Задача. 1.2.1 Сколькими способами можно рассадить 8 человек:

1. В один ряд?

2. За круглым столом?

Решение.

1. Искомое число способов равно числу перестановок из 8, т. е.

P8 = 8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 = 40320

2. Так как за круглым столом выбор первого человека не влияет на чередование элементов, то первым можно взять любого, а оставшихся упорядочим относительно выбранного. Это действие можно осуществить 8!/8 = 5040 способами.

Задача. 1.2.2 На курсе изучается 5 предметов. Скольки­ми способами можно составить расписание на субботу, ес­ли в этот день должны быть две различные пары?

Решение. Искомое число способов есть число размещений

Из 5 по 2, так как нужно учесть порядок пар:

Задача. 1.2.3 Сколько экзаменационных комиссий, состо­ящих из 7 человек, можно составить из 15 преподавате­лей?

Решение. Искомое число комиссий (без учета порядка) - это число сочетаний из 15 по 7:

Задача. 1.2.4 Из корзины, содержащей двадцать прону­мерованных шаров выбирают на удачу 5 шаров. Опреде­лить число элементов пространства элементарных собы­тий этого опыта, если:

Шары выбираются последовательно один за другим с возвращением после каждого извлечения;

Шары выбирают один за другим, не возвращая;

Выбирают сразу 5 шаров.

Решение.

Число способов извлечь первый шар из корзины равно 20. Так как извлеченный шар вернулся в корзину, то число способов извлечь второй шар также равно 20 и т. д. Тогда число способов извлечь 5 шаров в этом слу­чае равно 20 · 20 · 20 · 20 · 20 = 3200000.

Число способов извлечь первый шар из корзины рав­но 20. Так как извлеченный шар после извлечения не вернулся в корзину, то число способов извлечь второй шар стало равно 19 и т. д. Тогда число способов извлечь 5 шаров без возвращения равно 20 · 19 · 18 · 17 · 16 = A52 0

Число способов извлечь из корзины 5 шаров сразу рав­но числу сочетаний из 20 по 5:

Задача. 1.2.5 Подброшены две игральные кости. Найти вероятность события A того, что выпадет хотя бы одна единица.

Решение. На каждой кости может выпасть любое число очков от 1 до 6. Поэтому пространство элементарных со­бытий содержит 36 равновозможных исходов. Событию A благоприятствуют 11 исходов: (1,1), (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (1,5), (5,1), (1,6), (6,1), поэтому

Задача. 1.2.6 На красных карточках написаны буквы у, и, я, к, ц, ф, н, на синих - буквы а, а, о, т, т, с, ч. После тща­тельного перемешивания, что вероятнее: с первого раза из букв на красных карточках составить слово «функция» или из букв на синих карточках слово «частота»?

Решение. Пусть событие A - наудачу составленное из 7 букв слово «функция», событие B - наудачу составлен­ное из 7 букв слово «частота». Так как упорядочиваются два множества из 7 букв, то число всех исходов для со­бытий A и B равно n = 7!. Событию A благоприятствует один исход m = 1, так как все буквы на красных карточ­ках различны. Событию B благоприятствуют m = 2! · 2! ис­ходов, так как буквы «а» и «т» встречаются дважды. Тогда P(A) = 1/7! , P(B) = 2! 2! /7! , P(B) > P(A).

Задача. 1.2.7 На экзамене студенту предлагается 30 би­летов; в каждом билете два вопроса. Из 60 вопросов, вошед­ших в билеты, студент знает только 40. Найти вероят­ность того, что взятый студентом билет будет состо­ять

1. из известных ему вопросов;

2. из неизвестных ему вопросов;

3. из одного известного и одного неизвестного вопроса.

Решение. Пусть A - событие, состоящее в том, что на оба вопроса студент знает ответ; B - не знает ответа на оба вопроса; C - на один вопрос знает ответ, на другой - не знает. Выбор двух вопросов из 60 можно осуществить n = C260 = 60 2·59 = 1770 способами.

1. Имеется m = C240 = 40 2·39 = 780 возможностей выбора известных студенту вопросов. Тогда P(A) = M N = 17 78 70 0 = 0,44

2. Выбор двух неизвестных вопросов из 20 можно осуществить m = C220 = 20 2·19 = 190 способами. В таком случае

P(B) = M N = 11 79 70 0 = 0,11

3. Существует m = C14 0 ·C21 0 = 40·20 = 800 способов выбрать билет с одним известным и одним неизвестным вопроcом. Тогда P(C) = 18 70 70 0 = 0,45.

Задача. 1.2.8 По трем каналам послана некоторая ин­формация. Каналы работают независимо друг от друга. Найти вероятность того, что информация достигнет це­ли

1. Только по одному каналу;

2. Хотя бы по одному каналу.

Решение. Пусть A - событие, состоящее в том, что инфор­мация достигает цели только по одному каналу; B - хотя бы по одному каналу. Опыт - передача информации по трем каналам. Исход опыта - информация достигла цели. Обозначим Ai - информация достигает цели по i-му каналу. Пространство элементарных событий имеет вид:

Событию B благоприятствуют 7 исходов: все исходы, кро­меТогда n = 8; mA = 3; mB = 7; P(A) = 3 8 ; P(B) = 7 8.

Задача. 1.2.9 На отрезке единичной длины случайным об­разом появляется точка. Найти вероятность того, что расстояние от точки до концов отрезка больше 1/8.

Решение. По условию задачи искомому событию удовле­творяют все точки, появляющиеся на интервале (a; b).

Так как его длина s = 1 - 1 8 + 1 8 = 3 4, а длина всего отрезка S = 1, то искомая ве­роятность равна P = s/S = 3/14 = 0.75.

Задача. 1.2.10 В партии из N изделий K изделий являются бракованными. Для контроля выбирается m изделий. Най­ти вероятность того, что из M Изделий L Окажутся брако­ванными (событие А).

Решение. Выбор m изделий из n можно осуществить способами, а выбор L бракованных из k бракованных - способами. После выбора L бракованных изделий останется (m - L ) годных, находящихся среди (n - k) изделий. Тогда число исходов, благоприятствующих событию A, равно·

И искомая вероятность

Задача. 1.3.1 B урне 30 шаров: 15 красных, 10 синих и 5 белых. Найти вероятность того, что наугад вынутый шар - цветной.

Решение. Пусть событие A - вынут красный шар, собы­тие B - вынут синий шар. Тогда события (A + B) - вынут цветной шар. Имеем P(A) = 1 3 5 0 = 1 2 , P(B) = 1 3 0 0 = 1 3. Так как

События A и B несовместны, то P(A + B) = P(A) + P(B) = 1 2 + 1 3 = 5 6 = 0.83.

Задача. 1.3.2 Вероятность того, что будет снег (событие A), равна 0.6, А того, что будет дождь (событие B), равна 0.45. Найти вероятность плохой погоды, если вероятность дождя со снегом (событие AB) равна 0.25.

Решение. События A и B совместны, поэтому P(A + B) = P(A) + P(B) - P(AB) = 0.6 + 0.45 - 0.25 = 0.8

Задача. 1.3.3 B первом ящике 2 белых и 10 черных шаров, во втором - 3 белых и 9 черных шаров, в третьем - 6 бе­лых и 6 черных шаров. Из каждого ящика вынули по шару. Найти вероятность того, что все вынутые шары белые.

Решение. Событие A - вынут белый шар из первого ящи­ка, B - из второго ящика, C – из третьего. Тогда P(A) = 12 2 = 1 6; P(B) = 13 2 = 1 4; P(C) = 16 2 = 1 2. Событие ABC - все вынутые

Шары - белые. События A, B,C - независимые, поэтому

P(ABC) = P(A)·P (B)·P (C) = 1 6 · 1 4 · 1 2 = 41 8 = 0.02

Задача. 1.3.4 B электрическую цепь последовательно включены 5 Элементов, работающие независимо друг от друга. Вероятность отказов первого, второго, третье­го, четвертого, пятого элементов соответственно равны 0.1; 0.2; 0.3; 0.2; 0.1. Найти вероятность того, что тока в цепи не будет (событие A).

Решение. Так как элементы включены последовательно, то тока в цепи не будет, если откажет хотя бы один эле­мент. Событие Ai(i =1...5) - откажет I - й элемент. События

Задача. 1.3.5 Цепь состоит из независимых блоков, соеди­ненных в систему с одним входом и одним выходом.

Выход из строя за время Т различных элементов цепи - независимые события, имеющие следующие вероятно­сти P 1 = 0.1; P2 = 0.2; P3 = 0.3; P4 = 0.4. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Найти надежность системы.

Решение. Если событие A - {СИСТЕМА НАДЕЖНА}, Ai - {i - й БЛОК РАБОТАЕТ БЕЗОТКАЗНО}, то A = (A1 + A2)(A3 + A4). События A1+A2, A3+A4 - независимые, события A1 и A2, A3 и A4 - совместные. По формулам умножения и сложения вероятностей

Задача. 1.3.6 Рабочий обслуживает 3 станка. Вероят­ность того, что в течение часа станок не потребует вни­мания рабочего, равна для первого станка 0.9, для второго станка - 0.8, для третьего станка - 0.7.

Найти вероятность того, что в течение некоторого часа

1. Потребует внимания второй станок;

2. Потребуют внимания два станка;

3. Потребуют внимания не менее двух станков.

Решение. Пусть Ai - i-й станок потребует внимания ра­бочего,- i-й станок не потребует внимания рабочего. Тогда

Пространство элементарных событий:

1. Событие A - потребует внимания второй станок: Тогда

Так как события несовместные и независимые. P(A) = 0.9·0.8·0.7 + 0.1·0.8·0.7 + 0.9·0.8·0.3 + 0.1·0.8·0.3 = 0.8

2. Событие B - потребуют внимания два станка:

3. Событие C - потребуют внимания не менее двух стан­
ков:

Задача. 1.3.7 B машину «Экзаменатор» введено 50 Вопро­сов. Студенту предлагается 5 Вопросов и ставится оценка «отлично», если на все вопросы получен верный ответ. Най­ти вероятность получить “отлично”, если студент подго­товил только 40 Вопросов.

Решение. A - {ПОЛУЧЕНА ОЦЕНКА «ОТЛИЧНО»}, Ai - {ОТВЕТИЛ НА i - й ВОПРОС}. Тогда A = A1A2A3A4A5, имеем:

Или, другим способом - c помощью формулы классической вероятности:И

Задача. 1.3.8 Вероятности того, что нужная сборщику деталь находится в I , II , III , IV ящике, соответственно рав­ны 0.6; 0.7; 0.8; 0.9. Найти вероятность того, что сборщику придется проверить все 4 ящика (событие A ).

Решение. Пусть Ai - {Нужная сборщику деталь находит­ся в i-м ящике.} Тогда

Так как события несовместны и независимы, то

Задача. 1.4.1 Обследовалась группа из 10000 человек в возрасте свыше 60 лет. Оказалось, что 4000 человек яв­ляются постоянно курящими. У 1800 курящих обнаружи­лись серьезные изменения в легких. Среди некурящих изме­нения в легких имели 1500 человек. Какова вероятность того, что наугад обследованный человек, имеющий изме­нения в легких, является курящим?

Решение. Введем гипотезы: H1 - обследованный является постоянно курящим, H2 - является некурящим. Тогда по условию задачи

P(H1)= ------- =0,4, P(H2)=--------- =0,6

Обозначим через A событие, состоящее в том, что об­следованный имеет изменения в легких. Тогда по условию задачи

По формуле (1.15) находим

Искомая вероятность того, что обследованный человек является курящим, по формуле Байеса равна

Задача. 1.4.2 В продажу поступают телевизоры трех за­водов: 30% с первого завода, 20% - со второго, 50% - с третьего. Продукция первого завода содержит 20% теле­визоров со скрытым дефектом, второго - 10% , третьего - 5%. Какова вероятность приобрести исправный телеви­зор?

Решение. Рассмотрим события: A - приобретен исправ­ный телевизор; гипотезы H1, H2, H3 - телевизор поступил в продажу соответственно с первого, второго, третьего заво­да. По условию задачи

По формуле (1.15) находим

Задача. 1.4.3 Имеются три одинаковых по виду ящика. В первом 20 белых шаров, во втором - 10 белых и 10 черных шаров, в третьем - 20 черных шаров. Из наугад выбран­ного ящика вынут белый шар. Найти вероятность того, что этот шар из второго ящика.

Решение. Пусть событие A - вынут белый шар, гипотезы H1, H2, H3 - шар вынут соответственно из первого, второго, третьего ящика. Из условия задачи находим

Тогда
По формуле (1.15) находим

По формуле (1.16) находим

Задача. 1.4.4 Телеграфное сообщение состоит из сигна­лов «точка» и «тире». Статистические свойства помех та­ковы, что искажаются в среднем 2/5 Сообщений «точка» и 1/3 Сообщений «тире». Известно, что среди передавае­мых сигналов «точка» и «тире» встречаются в соотноше­нии 5: 3. Определить вероятность того, что принят пе­редаваемый сигнал, если:

А) принят сигнал «точка»;

Б) принят сигнал «тире».

Решение. Пусть событие A - принят сигнал «точка», а со­бытие B - принят сигнал «тире».

Можно сделать две гипотезы: H1 - передан сигнал «точ­ка», H2 - передан сигнал «тире». По условию P(H1) : P(H2) =5: 3. Кроме того, P(H1) + P(H2) = 1. Поэтому P(H1) = 5/8, P(H 2 ) = 3/8. Известно, что

Вероятности событий A И B Находим по формуле пол­ной вероятности:

Искомые вероятности будут:

Задача. 1.4.5 Из 10 каналов радиосвязи 6 каналов защи­щены от воздействия помех. Вероятность того, что за­щищенный канал в течении времени T не выйдет из строя, равна 0.95, для незащищенного канала - 0.8. Найти ве­роятность того, что случайно выбранные два канала не выйдут из строя в течение времени T , причем оба канала не защищены от воздействия помех.

Решение. Пусть событие A - оба канала не выйдут из строя в течение времени t, событие A1 - Выбран защищен­ный канал, A2 - Выбран незащищенный канал.

Запишем пространство элементарных событий для опыта - {выбрано два канала}:

Ω = {A1A1, A1A2, A2A1, A2A2}

Гипотезы:

H1 - оба канала защищены от воздействия помех;

H2 - первый выбранный канал защищен, второй вы­бранный канал не защищен от воздействия помех;

H3 - первый выбранный канал не защищен, второй выбранный канал защищен от воздействия помех;

H4 - оба выбранных канала не защищены от помех. Тогда

И

Задача. 1.5.1 По каналу связи передается 6 Сообщений. Каждое из сообщений может быть искажено помехами с вероятностью 0.2 Независимо от других. Найти вероят­ность того, что

1. 4 сообщения из 6 не искажены;

2. Не менее 3 из 6 переданы искаженными;

3. Хотя бы одно сообщение из 6 искажено;

4. Не более 2 из 6 не искажены;

5. Все сообщения переданы без искажения.

Решение. Так как вероятность искажения 0.2, то вероят­ность передачи сообщения без помех - 0.8.

1. Используя формулу Бернулли (1.17), найдем вероят­
ность передачи 4 сообщений из 6 без помех:

2. не менее 3 из 6 переданы искаженными:

3. хотя бы одно сообщение из 6 искажено:

4. хотя бы одно сообщение из 6 искажено:

5. все сообщения переданы без искажения:

Задача. 1.5.2 Вероятность того, того, что летом день будет ясным, равна 0.42; вероятность пасмурного дня рав­на 0.36 и переменной облачности - 0.22. Сколько дней из 59 можно ожидать ясных и пасмурных?

Решение. Из условия задачи видно, что надо искать наи­более вероятное число ясных и пасмурных дней.

Для ясных дней P = 0.42, N = 59. Составляем неравен­ства (1.20):

59 0.42 + 0.42 - 1 < m0 < 59 0.42 + 0.42.

24.2 ≤ Mo ≤ 25.2 → Mo = 25.

Для пасмурных дней P = 0.36, N = 59 и

0.36 59 + 0.36 - 1 ≤ M 0 ≤ 0.36 59 + 0.36;

Следовательно 20.16 ≤ M 0 ≤ 21.60; → M 0 = 21.

Таким образом, наиболее вероятное число ясных дней Mo =25, пасмурных дней - M0 = 21. Тогда летом можно ожи­дать Mo + M0 =46 ясных и пасмурных дней.

Задача. 1.5.3 На лекции по теории вероятностей при­сутствует 110 студентов курса. Найти вероятность того что

1. k студентов (k = 0,1,2) из присутствующих родились первого сентября;

2. хотя бы один студент курса родился первого сентя­бря.

P =1/365 очень мала, поэтому используем фор­мулу Пуассона (1.22). Найдем параметр Пуассона. Так как

N = 110, то λ = np = 110 1 /365 = 0.3.

Тогда по формуле Пуассона

Задача. 1.5.4 Вероятность того, что деталь не стан­дартная, равна 0.1. Сколько деталей нужно отобрать, чтобы с вероятностью P = 0.964228 Можно было утвер­ждать, что относительная частота появления нестан­дартных деталей отклоняется от постоянной вероятно­сти p = 0.1 По абсолютной величине не более, чем на 0.01 ?

Решение.

Требуемое число N Найдем по формуле (1.25). Имеем:

P = 1.1; q = 0.9; P = 0.96428. Подставим данные в формулу:

Откуда находим

По таблице значений функции Φ(X ) находим, что

Задача. 1.5.5 Вероятность выхода из строя за время Т одного конденсатора равна 0.2. Определить вероятность того, что за время Т из 100 конденсаторов выйдут из строя

1. Ровно 10 конденсаторов;

2. Не менее 20 конденсаторов;

3. Менее 28 конденсаторов;

4. От 14 до 26 конденсаторов.

Решение. Имеем П = 100, P = 0.2, Q = 1 - P = 0.8.

1. Ровно 10 конденсаторов.

Так как П Велико, воспользуемся локальной теоремой Муавра - Лапласа:

Вычислим

Так как функция φ(х) - четная, то φ(-2,5) = φ(2,50) = 0,0175 (находим по таблице значений функции φ(х). Искомая вероятность

2. Не менее 20 конденсаторов;

Требование, чтобы из 100 конденсаторов из строя вы­шли не менее 20, означает, что из строя выйдут либо 20, либо 21, ..., либо 100. Таким образом, Т1 = 20, Т 2 =100. Тогда

По таблице значений функции Φ(x) Найдем Φ(x1) = Φ(0) = 0, Φ(x2) = Φ(20) = 0.5. Искомая вероятность:

3. Менее 28 конденсаторов;

(здесь было учтено, что функция Лапласа Ф(x) - нечет­ная).

4. От 14 до 26 конденсаторов. По условию M1= 14, m2 = 26.
Вычислим x 1,x2:

Задача. 1.5.6 Вероятность появления некоторого собы­тия в одном опыте равна 0.6. Какова вероятность, что это событие появиться в большинстве из 60 опытов?

Решение. Количество M Появлений события в серии ис­пытаний находится в промежутке . «В большинстве опытов» означает, что M Принадлежит промежутку По условию N = 60, P = 0.6, Q = 0.4, M 1 = 30, m2 = 60. Вычислим x1 и x2:

Случайные величины и их распределения

Задача. 2.1.1 Дана таблица, где в верхней строке указа­ны возможные значения случайной величины X, а в нижней - их вероятности.

Может ли эта таблица быть рядом распределения X?

Ответ: Да, так как p1 + p2 + p3 + p4 + p5 = 1

Задача. 2.1.2 Выпущено 500 Лотерейных билетов, причем 40 Билетов принесут их владельцам выигрыш по 10000 Руб., 20 Билетов - по 50000 Руб., 10 Билетов - по 100000 Руб., 5 Билетов - по 200000 Руб., 1 Билет - 500000 Руб., осталь­ные - без выигрыша. Найти закон распределения выигры­ша для владельца одного билета.

Решение.

Возможные значения X: x5 = 10000, x4 = 50000, x3 = 100000, x2 = 200000, x1 = 500000, x6 = 0. Вероятности этих возможных значений:

Искомый закон распределения:

Задача. 2.1.3 Стрелок, имея 5 Патронов, стреляет до первого попадания в цель. Вероятность попадания при каждом выстреле равна 0.7. Построить закон распределе­ния числа использованных патронов, найти функцию рас­пределения F (X ) и построить ее график, найти P(2 < x < 5).

Решение.

Пространство элементарных событий опыта

Ω = {1, 01, 001, 0001, 00001, 11111},

Где событие {1} - попал в цель, событие {0} - не попал в цель. Элементарным исходам соответствуют следующие значения случайной величины числа использованных па­тронов: 1, 2, 3, 4, 5. Так как результат каждого следующего выстрела не зависит от предыдущего, то вероятности воз­можных значений:

P1 = P(x1 = 1) = P(1) = 0.7; P2 = P(x2 = 2) = P(01) = 0.3 · 0.7 = 0.21;

P3 = P(x3 = 3) = P(001) = 0.32 · 0.7 = 0.063;

P4 = P(x4 = 4) = P(0001) = 0.33 · 0.7 = 0.0189;

P5 = P(x5 = 5) = P(00001 + 00000) = 0.34 · 0.7 + 0.35 = 0.0081.

Искомый закон распределения:

Найдем функцию распределения F (X ), Пользуясь формулой (2.5)

X ≤1, F(x) = P(X < x) = 0

1 < x ≤2, F(x) = P(X < x) = P1 (X1 = 1) = 0.7

2 < x ≤ 3, F(x) = P1 (X = 1) + P2(x = 2) = 0.91

3 < x ≤ 4, F(x) = P1 (x = 1) + P2(x = 2) + P3(x = 3) =

= 0.7 + 0.21 + 0.063 = 0.973

4 < x ≤ 5, F(x) = P1(x = 1) + P2(x = 2) + P3(x = 3) +

+ P4(x = 4) = 0.973 + 0.0189 = 0.9919

X > 5, F (x) = 1

Найдем P(2 < x < 5). Применим формулу (2.4): P(2 < X < 5) = F(5) - F (2) = 0.9919 - 0.91 = 0.0819

Задача. 2.1.4 Дана F (X ) некоторой случайной величины:

Записать ряд распределения дляX.

Решение.

Из свойств F (X ) Следует, что возможные значения слу­чайной величины X - Точки разрыва функции F (X ), А со­ответствующие им вероятности - скачки функции F (X ). Находим возможные значения случайной величины X={0,1,2,3,4}.

Задача. 2.1.5 Установить, какая из функций

Является функцией распределения некоторой случайной величины.

В случае утвердительного ответа, найти вероят­ность того, что соответствующая случайная величина принимает значения на [-3,2].

Решение. Построим графики функций F1(x) и F2(x):

Функция F2(x) не является функцией распределения, так как не является неубывающей. Функция F1(x) является

Функцией распределения некоторой случайной величины, так как является неубывающей и удовлетворяет условию (2.3). Найдем вероятность попадания на промежуток:

Задача. 2.1.6 Дана плотность вероятности непрерывной случайной величины X:

Найти:

1. Коэффициент C;

2. Функцию распределения F(x);

3. Вероятность попадания случайной величины в интер­вал (1, 3).

Решение. Из условия нормировки (2.9)находим

Следовательно,

По формуле (2.10) находим:

Таким образом,

По формуле (2.4) находим

Задача. 2.1.7 Случайное время простоя радиоэлектрон­ной аппаратуры в ряде случаев имеет плотность вероят­ности

Где M = lge = 0.4343...

Найти функцию распределения F(x).

Решение. По формуле (2.10) находим

Где

Задача. 2.2.1 Дан ряд распределения дискретной случай­ной величины X:

Найти математическое ожидание, дисперсию, сред­нее квадратичное отклонение, M, D[-3X + 2].

Решение.

По формуле (2.12) находим математическое ожидание:

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 10 · 0.2 + 20 · 0.15 + 30 · 0.25 + 40 · 0.4 = 28.5

M = 2M[X] + M = 2M[X] + 5 = 2 · 28.5 + 5 = 62. По формуле (2.19) найдем дисперсию:

Задача. 2.2.2 Найти математическое ожидание, диспер­сию и среднее квадратичное отклонение непрерывной слу­чайной величины X, функция распределения которой

.

Решение. Найдем плотность вероятности:

Математическое ожидание найдем по формуле (2.13):

Дисперсию найдем по формуле (2.19):

Найдем сначала математическое ожидание квадрата случайной величины:

Среднее квадратичное отклонение

Задача. 2.2.3 X имеет ряд распределения:

Найти математическое ожидание и дисперсию случайной величины Y = EX.

Решение. M [ Y ] = M[ EX] = e -- 1 · 0.2 + e0 · 0.3 + e1 · 0.4 + e2 · 0.1 =

0.2 · 0.3679 + 1 · 0.3 + 2.71828 · 0.4 + 7.389 · 0.1 = 2.2.

D[Y] = D = M[(eX)2 - M2 [E X] =

[(e-1)2 0.2 + (e0)2 0.3 + (e1)2 0.4 + (e2)2 0.1] - (2.2)2 =

= (e--2 0.2 + 0.3 + e2 0.4 + e4 0.1) - 4.84 = 8.741 - 4.84 = 3.9.

Задача. 2.2.4 Дискретная случайная величина X Может принимать только два значения X1 И X2, причем X1 < x2. Известны вероятность P1 = 0.2 Возможного значения X1, математическое ожидание M[X] = 3.8 И дисперсия D[X] = 0.16. Найти закон распределения случайной величины.

Решение. Так как случайная величина X принимает толь­ко два значения x1 и x2, то вероятность p2 = P(X = x2) = 1 - p1 = 1 - 0.2 = 0.8.

По условию задачи имеем:

M[X] = x1p1 + x2p2 = 0.2x1 + 0.8x2 = 3.8;

D[X] = (x21p1 + x22p2) - M2[X] = (0.2x21 + 0.8x22) - (0.38)2 = 0.16.

Таким образом получили систему уравнений:

Условию x1

Задача. 2.2.5 Случайная величина X подчинена закону распределения, график плотности которого имеет вид:

Найти математическое ожидание, дисперсию и сред­нее квадратичное отклонение.

Решение. Найдем дифференциальную функцию распре­деления f(x). Вне интервала (0, 3) f(x) = 0. На интервале (0, 3) график плотности есть прямая с угловым коэффици­ентом k = 2/9, проходящая через начало координат. Таким образом,

Математическое ожидание:

Найдем дисперсию и среднее квадратичное отклоне­ние:

Задача. 2.2.6 Найти математическое ожидание и дис­персию суммы очков, выпадающих на четырех игральных кубиках при одном бросании.

Решение. Обозначим A - число очков на одном кубике при одном бросании, B – число очков на втором кубике, C - на третьем кубике, D - на четвертом кубике. Для случайных ве­личин A, B, C, D за­кон распределения один.

Тогда M[A] = M[B] = M[C] = M[D] = (1+2+3+4+5+6) / 6 = 3.5

Задача. 2.3.1 Вероятность того, что частица, вылетев­шая из радиоактивного источника, будет зарегистриро­вана счетчиком, равна 0.0001. За время наблюдения из ис­точника вылетело 30000 Частиц. Найти вероятность то­го, что счетчик зарегистрировал:

1. Ровно 3 частицы;

2. Ни одной частицы;

3. Не менее 10 частиц.

Решение. По условию П = 30000, P = 0.0001. События, со­стоящие в том, что частицы, вылетевшие из радиоактив­ного источника, зарегистрированы, независимы; число П Велико, а вероятность P Мала, поэтому воспользуемся рас­пределением Пуассона:Найдем λ: λ = п P = 30000 0.0001 = 3 = М[Х]. Искомые вероятности:

Задача. 2.3.2 В партии 5% нестандартных деталей. На­удачу отобраны 5 деталей. Написать закон распределе­ния дискретной случайной величины X - числа нестан­дартных деталей среди пяти отобранных; найти мате­матическое ожидание и дисперсию.

Решение. Дискретная случайная величина X - число нестандартных деталей - имеет биномиальное распреде­ление и может принимать следующие значения: x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5. Вероятность нестандарт­ной детали в партии p = 5/100 = 0.05. Найдем вероятности этих возможных значений:

Напишем искомый закон распределения:

Найдем числовые характеристики:

0 0.7737809 + 1 0.2036267 + 2 0.0214343+

3 0.0011281 + 4 0.0000297 + 5 0.0000003 = 0.2499999 ≈ 0.250

M[X] = N p = 5 0.05 = 0.25.

D[X] = M M 2 [X] = 02 0.7737809 + 12 0.2036267+

22 0.0214343 + 32 0.0011281 + 42 0.0000297 + 52 0.0000003- 0.0625 =

0.2999995 - 0.0625 = 0.2374995 ≈ 0.2375

Или D [ X ] = n p (1 - P) = 5 0.05 0.95 = 0.2375.

Задача. 2.3.3 Время обнаружения цели радиолокатором распределено по показательному закону

Где 1/ λ = 10 Сек. - среднее время обнаружения цели. Найти вероятность того, что цель будет обнаружена за время от 5 До 15 Сек. после начала поиска.

Решение. Вероятность попадания случайной величины X В интервал (5, 15) Найдем по формуле (2.8):

ПриПолучаем

0.6065(1 - 0.3679) = 0.6065 0.6321 = 0.3834

Задача. 2.3.4 Случайные ошибки измерения подчинены нормальному закону с параметрами a = 0, σ = 20 Мм . За­писать дифференциальную функцию распределения F (X ) и найти вероятность того, что при измерении допущена ошибка в интервале от 5 До 10 Мм .

Решение. Подставим значения параметров a и σ в диффе­ренциальную функцию распределения (2.35):

По формуле (2.42) найдем вероятность попадания слу­чайной величины X В интервале , т. е. A = 0, B = 0.1. То­гда дифференциальная функция распределения F(x) Будет иметь вид