Линейной модели построим таблицу дисперсионный анализ. Курсовая работа: Дисперсионный анализ. Сущность корреляционной связи

Свои способности человек может узнать, только попытавшись приложить их. (Сенека)

Дисперсионный анализ

Вводный обзор

В этом разделе мы рассмотрим основные методы, предположения и терминологию дисперсионного анализа.

Отметим, что в англоязычной литературе дисперсионный анализ обычно называется анализом вариации. Поэтому, для краткости, ниже мы иногда будем использовать термин ANOVA (An alysis o f va riation ) для обычного дисперсионного анализа и термин MANOVA для многомерного дисперсионного анализа. В этом разделе мы последовательно рассмотрим основные идеи дисперсионного анализа (ANOVA ), ковариационного анализа (ANCOVA ), многомерного дисперсионного анализа (MANOVA ) и многомерного ковариационного анализа (MANCOVA ). После краткого обсуждения достоинств анализа контрастов и апостериорных критериев рассмотрим предположения, на которых основаны методы дисперсионного анализа. Ближе к концу этого раздела поясняются преимущества многомерного подхода для анализа повторных измерений по сравнению с традиционным одномерным подходом.

Основные идеи

Цель дисперсионного анализа. Основной целью дисперсионного анализа является исследование значимости различия между средними. Глава (глава 8) содержит краткое введение в исследование статистической значимости. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t - критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t - критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений). Если вы не достаточно знакомы с этими критериями, рекомендуем обратиться к вводному обзору главы (глава 9).

Откуда произошло название Дисперсионный анализ ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними, мы на самом деле анализируем дисперсии.

Разбиение суммы квадратов

Для выборки объема n выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на n-1 (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений), обозначаемая, для краткости, SS (от английского Sum of Squares – Сумма Квадратов). В основе дисперсионного анализа лежит разделение (или разбиение) дисперсии на части. Рассмотрим следующий набор данных:

Средние двух групп существенно различны (2 и 6 соответственно). Сумма квадратов отклонений внутри каждой группы равна 2. Складывая их, получаем 4. Если теперь повторить эти вычисления без учета групповой принадлежности, то есть, если вычислить SS исходя из общего среднего этих двух выборок, то получим 28. Иными словами, дисперсия (сумма квадратов), основанная на внутригрупповой изменчивости, приводит к гораздо меньшим значениям, чем при вычислении на основе общей изменчивости (относительно общего среднего). Причина этого, очевидно, заключается в существенной разнице между средними значениями, и это различие между средними и объясняет существующее различии между суммами квадратов. В самом деле, если использовать для анализа приведенных данных модуль Дисперсионный анализ , будут получены следующие результаты:

Как видно из таблицы, общая сумма квадратов SS =28 разбита на сумму квадратов, обусловленную внутригрупповой изменчивостью (2+2=4 ; см. вторую строку таблицы) и сумму квадратов, обусловленную различием средних значений. (28-(2+2)=24; см первую строку таблицы).

SS ошибок и SS эффекта. Внутригрупповая изменчивость (SS ) обычно называется дисперсией ошибки. Это означает, что обычно при проведении эксперимента она не может быть предсказана или объяснена. С другой стороны, SS эффекта (или межгрупповую изменчивость) можно объяснить различием между средними значениями в изучаемых группах. Иными словами, принадлежность к некоторой группе объясняет межгрупповую изменчивость, т.к. нам известно, что эти группы обладают разными средними значениями.

Проверка значимости. Основные идеи проверки статистической значимости обсуждаются в главе Элементарные понятия статистики (глава 8). В этой же главе объясняются причины, по которым многие критерии используют отношение объясненной и необъясненной дисперсии. Примером такого использования является сам дисперсионный анализ. Проверка значимости в дисперсионном анализе основана на сравнении дисперсии, обусловленной межгрупповым разбросом (называемой средним квадратом эффекта или MS эффект ) и дисперсии, обусловленной внутригрупповым разбросом (называемой средним квадратом ошибки или MS ошибка ). Если верна нулевая гипотеза (равенство средних в двух популяциях), то можно ожидать сравнительно небольшое различие в выборочных средних из-за случайной изменчивости. Поэтому при нулевой гипотезе внутригрупповая дисперсия будет практически совпадать с общей дисперсией, подсчитанной без учета группой принадлежности. Полученные внутригрупповые дисперсии можно сравнить с помощью F - критерия, проверяющего, действительно ли отношение дисперсий значимо больше 1. В рассмотренном выше примере F - критерий показывает, что различие между средними статистически значимо.

Основная логика дисперсионного анализа. Подводя итоги, можно сказать, что целью дисперсионного анализа является проверка статистической значимости разницы между средними (для групп или переменных). Эта проверка проводится с помощью анализа дисперсии, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо, нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Зависимые и независимые переменные. Переменные, значения которых определяется с помощью измерений в ходе эксперимента (например, балл, набранный при тестировании), называются зависимыми переменными. Переменные, которыми можно управлять при проведении эксперимента (например, методы обучения или другие критерии, позволяющие разделить наблюдения на группы) называются факторами или независимыми переменными. Более подробно эти понятия описаны в главе Элементарные понятия статистики (глава 8).

Многофакторный дисперсионный анализ

В рассмотренном выше простом примере вы могли бы сразу вычислить t-критерий для независимых выборок, используя соответствующую опцию модуля Основные статистики и таблицы. Полученные результаты, естественно, совпадут с результатами дисперсионного анализа. Однако дисперсионный анализ содержит гибкие и мощные технические средства, которые могут быть использованы для гораздо более сложных исследований.

Множество факторов. Мир по своей природе сложен и многомерен. Ситуации, когда некоторое явление полностью описывается одной переменной, чрезвычайно редки. Например, если мы пытаемся научиться выращивать большие помидоры, следует рассматривать факторы, связанные с генетической структурой растений, типом почвы, освещенностью, температурой и т.д. Таким образом, при проведении типичного эксперимента приходится иметь дело с большим количеством факторов. Основная причина, по которой использование дисперсионного анализа предпочтительнее повторного сравнения двух выборок при разных уровнях факторов с помощью t - критерия, заключается в том, что дисперсионный анализ более эффективен и, для малых выборок, более информативен.

Управление факторами. Предположим, что в рассмотренном выше примере анализа двух выборок мы добавим еще один фактор, например, Пол - Gender . Пусть каждая группа состоит из 3 мужчин и 3 женщин. План этого эксперимента можно представить в виде таблицы 2 на 2:

Эксперимент. Группа 1 Эксперимент. Группа 2
Мужчины 2 6
3 7
1 5
Среднее 2 6
Женщины 4 8
5 9
3 7
Среднее 4 8

До проведения вычислений, можно заметить, что в этом примере общая дисперсия имеет, по крайней мере, три источника:

(1) случайная ошибка (внутригрупповая дисперсия),

(2) изменчивость, связанная с принадлежностью к экспериментальной группе, и

(3) изменчивость, обусловленная полом объектов наблюдения.

(Отметим, что существует еще один возможный источник изменчивости – взаимодействие факторов , который мы обсудим позднее). Что произойдет, если мы не будем включать пол gender как фактор при проведении анализа и вычислим обычный t -критерий? Если мы будем вычислять суммы квадратов, игнорируя пол – gender (т.е., объединяя объекты разного пола в одну группу при вычислении внутригрупповой дисперсии, получив при этом сумму квадратов для каждой группы равную SS =10, и общую сумму квадратов SS = 10+10 = 20), то получим большее значение внутригрупповой дисперсии, чем при более точном анализе с дополнительным разбиением на подгруппы по полу - gender (при этом внутригрупповые средние будут равны 2, а общая внутригрупповая сумма квадратов равна SS = 2+2+2+2 = 8). Это различие связано с тем, что среднее значение для мужчин - males меньше, чем среднее значение для женщин – female , и это различие в средних значениях увеличивает суммарную внутригрупповую изменчивость, если фактор пола не учитывается. Управление дисперсией ошибки увеличивает чувствительность (мощность) критерия.

На этом примере видно еще одно преимущество дисперсионного анализа по сравнению с обычным t -критерием для двух выборок. Дисперсионный анализ позволяет изучать каждый фактор, управляя значениями остальных факторов. Это, в действительности, и является основной причиной его большей статистической мощности (для получения значимых результатов требуются меньшие объемы выборок). По этой причине дисперсионный анализ даже на небольших выборках дает статистически более значимые результаты, чем простой t - критерий.

Эффекты взаимодействия

Существует еще одно преимущество применения дисперсионного анализа по сравнению с обычным t - критерием: дисперсионный анализ позволяет обнаружить взаимодействие между факторами и, следовательно, позволяет изучать более сложные модели. Для иллюстрации рассмотрим еще один пример.

Главные эффекты, попарные (двухфакторные) взаимодействия. Предположим, что имеется две группы студентов, причем психологически студенты первой группы настроены на выполнение поставленных задач и более целеустремленны, чем студенты второй группы, состоящей из более ленивых студентов. Разобьем каждую группу случайным образом пополам и предложим одной половине в каждой группе сложное задание, а другой - легкое. После этого измерим, насколько напряженно студенты работают над этими заданиями. Средние значения для этого (вымышленного) исследования показаны в таблице:

Какой вывод можно сделать из этих результатов? Можно ли заключить, что: (1) над сложным заданием студенты трудятся более напряженно; (2) целеустремленные студенты работают упорнее, чем ленивые? Ни одно из этих утверждений не отражает сущность систематического характера средних, приведенных в таблице. Анализируя результаты, правильнее было бы сказать, что над сложными заданиями работают упорнее только целеустремленные студенты, в то время как над легкими заданиями только ленивые работают упорнее. Другими словами характер студентов и сложность задания взаимодействуя между собой влияют на затрачиваемое усилие. Это пример парного взаимодействия между характером студентов и сложностью задания. Отметим, что утверждения 1 и 2 описывают главные эффекты .

Взаимодействия высших порядков. В то время как объяснить попарные взаимодействия еще сравнительно легко, взаимодействия высших порядков объяснить значительно сложнее. Представим себе, что в рассматриваемый выше пример, введен еще один фактор пол -Gender и мы получили следующую таблицу средних значений:

Какие теперь выводы можно сделать из полученных результатов? Графики средних позволяют легко интерпретировать сложные эффекты. Модуль дисперсионного анализа позволяет строить эти графики практически одним щелчком мышки.

Изображение на графиках внизу представляет собой изучаемое трехфакторное взаимодействие.

Глядя на графики, можно сказать, что у женщин существует взаимодействие между характером и сложностью теста: целеустремленные женщины работают над трудным заданием более напряженно, чем над легким. У мужчин это же взаимодействие носит обратный характер. Видно, что описание взаимодействия между факторами становится более запутанным.

Общий способ описания взаимодействий. В общем случае взаимодействие между факторами описывается в виде изменения одного эффекта под воздействием другого. В рассмотренном выше примере двухфакторное взаимодействие можно описать как изменение главного эффекта фактора, характеризующего сложность задачи, под воздействием фактора, описывающего характер студента. Для взаимодействия трех факторов из предыдущего параграфа можно сказать, что взаимодействие двух факторов (сложности задачи и характера студента) изменяется под воздействием пола Gender . Если изучается взаимодействие четырех факторов, можно сказать, что взаимодействие трех факторов, изменяется под воздействием четвертого фактора, т.е. существуют различные типы взаимодействий на разных уровнях четвертого фактора. Оказалось, что во многих областях взаимодействие пяти или даже большего количества факторов не является чем-то необычным.

Сложные планы

Межгрупповые и внутригрупповые планы (планы с повторными измерениями)

При сравнении двух различных групп обычно используется t - критерий для независимых выборок (из модуля Основные статистики и таблицы ). Когда сравниваются две переменные на одном и том же множестве объектов (наблюдений), используется t -критерий для зависимых выборок. Для дисперсионного анализа также важно зависимы или нет выборки. Если имеются повторные измерения одних и тех же переменных (при разных условиях или в разное время) для одних и тех же объектов , то говорят о наличии фактора повторных измерений (называемого также внутригрупповым фактором, поскольку для оценки его значимости вычисляется внутригрупповая сумма квадратов). Если сравниваются разные группы объектов (например, мужчины и женщины, три штамма бактерий и т.п.), то разница между группами описывается межгрупповым фактором. Способы вычисления критериев значимости для двух описанных типов факторов различны, но общая их логика и интерпретации совпадает.

Меж- и внутригрупповые планы. Во многих случаях эксперимент требует включение в план и межгруппового фактора, и фактора повторных измерений. Например, измеряются математические навыки студентов женского и мужского пола (где пол – Gender -межгрупповой фактор) в начале и в конце семестра. Два измерения навыковкаждого студента образуют внутригрупповой фактор (фактор повторных измерений). Интерпретация главных эффектов и взаимодействий для межгрупповых факторов и факторов повторных измерений совпадает, и оба типа факторов могут, очевидно, взаимодействовать между собой (например, женщины приобретают навыки в течение семестра, а мужчины их теряют).

Неполные (гнездовые) планы

Во многих случаях можно пренебречь эффектом взаимодействия. Это происходит или когда известно, что в популяции эффект взаимодействия отсутствует, или когда осуществление полного факторного плана невозможно. Например, изучается влияние четырех добавок к топливу на расход горючего. Выбираются четыре автомобиля и четыре водителя. Полный факторный эксперимент требует, чтобы каждая комбинация: добавка, водитель, автомобиль - появились хотя бы один раз. Для этого нужно не менее 4 x 4 x 4 = 64 групп испытаний, что требует слишком больших временных затрат. Кроме того, вряд ли существует взаимодействие между водителем и добавкой к топливу. Принимая это во внимание, можно использовать план Латинские квадраты, в котором содержится лишь16 групп испытаний (четыре добавки обозначаются буквами A, B, C и D):

Латинские квадраты описаны в большинстве книг по планированию экспериментов (например, Hays, 1988; Lindman, 1974; Milliken and Johnson, 1984; Winer, 1962), и здесь они не будут детально обсуждаться. Отметим, что латинские квадраты это не n олные планы, в которых участвуют не все комбинации уровней факторов. Например, водитель 1 управляет автомобилем 1 только с добавкой А, водитель 3 управляет автомобилем 1 только с добавкой С. Уровни фактора добавок (A, B, C и D) вложены в ячейки таблицы автомобиль x водитель – как яйца в гнезда. Это мнемоническое правило полезно для понимания природы гнездовых или вложенных планов. Модуль Дисперсионный анализ предоставляет простые способы анализ планов такого типа.

Ковариационный анализ

Основная идея

В разделе Основные идеи кратко обсуждалась идея управления факторами и то, каким образом включение аддитивных факторов позволяет уменьшать сумму квадратов ошибок и увеличивать статистическую мощность плана. Все это может быть распространено и на переменные с непрерывным множеством значений. Когда такие непрерывные переменные включаются в план в качестве факторов, они называются ковариатами .

Фиксированные ковариаты

Предположим, что сравниваются математические навыки двух групп студентов, которые обучались по двум различным учебникам. Предположим также, что имеются данные о коэффициенте интеллекта (IQ) для каждого студента. Можно предположить, что коэффициент интеллекта связан с математическими навыками, и использовать эту информацию. Для каждой из двух групп студентов можно вычислить коэффициент корреляции между IQ и математическими навыками. Используя этот коэффициент корреляции, можно выделить долю дисперсии в группах, объясняемую влиянием IQ и необъясняемую долю дисперсии (см. также Элементарные понятия статистики (глава 8) и Основные статистики и таблицы (глава 9)). Оставшаяся доля дисперсии используется при проведении анализа как дисперсия ошибки. Если имеется корреляция между IQ и математическими навыками, то можно существенно уменьшить дисперсии ошибки SS /(n -1) .

Влияние ковариат на F- критерий. F- критерий оценивает статистическую значимость различия средних значений в группах, при этом вычисляется отношение межгрупповой дисперсии (MS effect ) к дисперсии ошибок (MS error ) . Если MS error уменьшается, например, при учете фактора IQ, значение F увеличивается.

Множество ковариат. Рассуждения, использованные выше для одной ковариаты (IQ), легко распространяются на несколько ковариат. Например, кроме IQ, можно включить измерение мотивации, пространственного мышления и т.д. Вместо обычного коэффициента корреляции при этом используется множественный коэффициент корреляции.

Когда значение F -критерия уменьшается. Иногда введение ковариат в план эксперимента уменьшает значение F -критерия. Обычно это указывает на то, что ковариаты коррелированы не только с зависимой переменной (например, математическими навыками), но и с факторами (например, с разными учебниками). Предположим, что IQ измеряется в конце семестра, после почти годового обучения двух групп студентов по двум разным учебникам. Хотя студенты разбивались на группы случайным образом, может оказаться, что различие учебников настолько велико, что и IQ и математические навыки в разных группах будут сильно различаться. В этом случае, ковариаты не только уменьшают дисперсию ошибок, но и межгрупповую дисперсию. Другими словами, после контроля за разностью IQ в разных группах, разность в математических навыках уже будет несущественной. Можно сказать иначе. После “исключения” влияния IQ, неумышленно исключается и влияние учебника на развитие математических навыков.

Скорректированные средние. Когда ковариата влияет на межгрупповой фактор, следует вычислять скорректированные средние , т.е. такие средние, которые получаются после удаления всех оценок ковариат.

Взаимодействие между ковариатами и факторами. Также как исследуется взаимодействие между факторами, можно исследовать взаимодействие между ковариатами и между группами факторов. Предположим, что один из учебников особенно подходит для умных студентов. Второй учебник для умных студентов скушен, а для менее умных студентов этот же учебник труден. В результате имеется положительная корреляция между IQ и результатом обучения в первой группе (более умные студенты, лучше результат) и нулевая или небольшая отрицательная корреляция во второй группе (чем умнее студент, тем менее вероятно приобретение математических навыков из второго учебника). В некоторых исследованиях эта ситуация обсуждается как пример нарушения предположений ковариационного анализа. Однако так как в модуле Дисперсионный анализ используются самые общие способы ковариационного анализа, можно, в частности, оценить статистическую значимость взаимодействия между факторами и ковариатами.

Переменные ковариаты

В то время как фиксированные ковариаты обсуждаются в учебниках достаточно часто, переменные ковариаты упоминаются намного реже. Обычно, при проведении экспериментов с повторными измерениями, нас интересуют различия в измерениях одних и тех же величин в разные моменты времени. А именно, нас интересует значимость этих различий. Если одновременно с измерениями зависимых переменных проводится измерение ковариат, можно вычислить корреляцию между ковариатой и зависимой переменной.

Например, можно изучать интерес к математике и математические навыки в начале и в конце семестра. Интересно было бы проверить, коррелированы ли между собой изменения в интересе к математике с изменением математических навыков.

Модуль Дисперсионный анализ в STATISTICA автоматически оценивает статистическую значимость изменения ковариат в тех планах, где это возможно.

Многомерные планы: многомерный дисперсионный и ковариационный анализ

Межгрупповые планы

Все рассматриваемые ранее примеры включали только одну зависимую переменную. Когда одновременно имеется несколько зависимых переменных, возрастает лишь сложность вычислений, а содержание и основные принципы не меняются.

Например, проводится исследование двух различных учебников. При этом изучаются успехи студентов в изучении физики и математики. В этом случае имеются две зависимые переменные и нужно выяснить, как влияют на них одновременно два разных учебника. Для этого можно воспользоваться многомерным дисперсионным анализом (MANOVA). Вместо одномерного F критерия, используется многомерный F критерий (l-критерий Уилкса), основанный на сравнении ковариационной матрицы ошибок и межгрупповой ковариационной матрицы.

Если зависимые переменные коррелированы между собой, то эта корреляция должна учитываться при вычислении критерия значимости. Очевидно, если одно и то же измерение повторяется дважды, то ничего нового получить при этом нельзя. Если к имеющемуся измерению добавляется коррелированное с ним измерение, то получается некоторая новая информация, но при этом новая переменная содержит избыточную информацию, которая отражается в ковариации между переменными.

Интерпретация результатов. Если общий многомерный критерий значим, можно заключить, что соответствующий эффект (например, тип учебника) значим. Однако встают следующие вопросы. Влияет ли тип учебника на улучшение только математических навыков, только физических навыков, или одновременно на улучшение тех и других навыков. В действительности, после получения значимого многомерного критерия, для отдельного главного эффекта или взаимодействия исследуется одномерный F критерий. Другими словами, отдельно исследуются зависимые переменные, которые вносят вклад в значимость многомерного критерия.

Планы с повторными измерениями

Если измеряются математические и физические навыки студентов в начале семестра и в конце, то это и есть повторные измерения. Изучение критерия значимости в таких планах это логическое развитие одномерного случая. Заметим, что методы многомерного дисперсионного анализа обычно также используются для исследования значимости одномерных факторов повторных измерений, имеющих более чем два уровня. Соответствующие применения будут рассмотрены позднее в этой части.

Суммирование значений переменных и многомерный дисперсионный анализ

Даже опытные пользователи одномерного и многомерного дисперсионного анализа часто приходят в затруднение, получая разные результаты при применении многомерного дисперсионного анализа, например, для трех переменных, и при применении одномерного дисперсионного анализа к сумме этих трех переменных, как к одной переменной.

Идея суммирования переменных состоит в том, что каждая переменная содержит в себе некоторую истинную переменную, которая и исследуется, а также случайную ошибку измерения. Поэтому при усреднении значений переменных, ошибка измерения будет ближе к 0 для всех измерений и усредненное значений будет более надежным. На самом деле, в этом случае применение дисперсионного анализа к сумме переменных разумно и является мощным методом. Однако если зависимые переменные по своей природе многомерны, суммирование значений переменных неуместно.

Например, пусть зависимые переменные состоят из четырех показателей успеха в обществе . Каждый показатель характеризует совершенно независимую сторону человеческой деятельности (например, профессиональный успех, преуспеваемость в бизнесе, семейное благополучие и т.д.). Сложение этих переменных подобно сложению яблока и апельсина. Сумма этих переменных не будет подходящим одномерным показателем. Поэтому с такими данными нужно обходится как с многомерными показателями в многомерном дисперсионном анализе .

Анализ контрастов и апостериорные критерии

Почему сравниваются отдельные множества средних?

Обычно гипотезы относительно экспериментальных данных формулируются не просто в терминах главных эффектов или взаимодействий. Примером может служить такая гипотеза: некоторый учебник повышает математические навыки только у студентов мужского пола, в то время как другой учебник примерно одинаково эффективен для обоих полов, но все же менее эффективен для мужчин. Можно предсказать, что эффективность учебника взаимодействует с полом студента. Однако этот прогноз касается также природы взаимодействия. Ожидается значительное различие между полами для обучающихся по одной книге и практически не зависимые от пола результаты для обучающихся по другой книге. Такой тип гипотез обычно исследуется с помощью анализа контрастов.

Анализ контрастов

Если говорить коротко, то анализ контрастов позволяет оценивать статистическую значимость некоторых линейных комбинаций эффектов сложного плана. Анализ контрастов главный и обязательный элемент любого сложного плана дисперсионного анализа. Модуль Дисперсионный анализ имеет достаточно разнообразные возможности анализа контрастов, которые позволяют выделять и анализировать любые типы сравнений средних.

Апостериорные сравнения

Иногда в результате обработки эксперимента обнаруживается неожиданный эффект. Хотя в большинстве случаев творческий исследователь сможет объяснить любой результат, это не дает возможностей для дальнейшего анализа и получения оценок для прогноза. Эта проблема является одной из тех, для которых используются апостериорные критерии , то есть критерии, не использующие априорные гипотезы. Для иллюстрации рассмотрим следующий эксперимент. Предположим, что на 100 карточках записаны числа от 1 до 10. Опустив все эти карточки в шапку, мы случайным образом выбираем 20 раз по 5 карточек, и вычисляем для каждой выборки среднее значение (среднее чисел, записанных на карточки). Можно ли ожидать, что найдутся две выборки, у которых средние значения значимо отличаются? Это очень правдоподобно! Выбирая две выборки с максимальным и минимальным средним, можно получить разность средних, сильно отличающуюся от разности средних, например, первых двух выборок. Эту разность можно исследовать, например, с помощью анализа контрастов. Если не вдаваться в детали, то существует несколько, так называемых апостериорных критериев, которые основаны в точности на первом сценарии (взятие экстремальных средних из 20 выборок), т. е. эти критерии основаны на выборе наиболее отличающихся средних для сравнения всехсредних значений в плане. Эти критерии применяются для того, чтобы чисто случайно не получить искусственный эффект, например, обнаружить значимое различие между средними, когда его нет. Модуль Дисперсионный анализ предлагает широкий выбор таких критериев. Когда в эксперименте, связанном с несколькими группами, встречаются неожиданные результаты, то используются апостериорные процедуры для исследования статистической значимости полученных результатов.

Сумма квадратов типа I, II, III и IV

Многомерная регрессия и дисперсионный анализ

Существует тесная взаимосвязь между методом многомерной регрессии и дисперсионным анализом (анализом вариаций). И в том и в другом методе исследуется линейная модель. Если говорить коротко, то практически все планы эксперимента можно исследовать с помощью многомерной регрессии. Рассмотрим следующий простой межгрупповой 2 x 2 план.

DV A B AxB
3 1 1 1
4 1 1 1
4 1 -1 -1
5 1 -1 -1
6 -1 1 -1
6 -1 1 -1
3 -1 -1 1
2 -1 -1 1

Столбцы А и В содержат коды, характеризующие уровни факторов А и В, столбец АxВ содержит произведение двух столбцов А и В. Мы можем анализировать эти данные с помощью многомерной регрессии. Переменная DV определяется как зависимая переменная, переменные от A до AxB как независимые переменные. Исследование значимости для коэффициентов регрессии будет совпадать с вычислениями в дисперсионном анализе значимости главных эффектов факторов A и B и эффекта взаимодействия AxB .

Несбалансированные и сбалансированные планы

При вычислении корреляционной матрицы для всех переменных, например, для данных, изображенных выше, можно заметить, что главные эффекты факторов A и B и эффект взаимодействия AxB некоррелированы. Это свойство эффектов называют также ортогональностью. Говорят, что эффекты A и B - ортогональны или независимы друг от друга. Если все эффекты в плане ортогональны друг другу, как в приведенном выше примере, то говорят, что план сбалансирован .

Сбалансированные планы обладают “хорошим свойством”. Вычисления при анализе таких планов очень просты. Все вычисления сводятся к вычислению корреляции между эффектами и зависимыми переменными. Так как эффекты ортогональны, частные корреляции (как в полной многомерной регрессии) не вычисляются. Однако в реальной жизни планы не всегда сбалансированы.

Рассмотрим реальные данные с неравным числом наблюдений в ячейках.

Фактор A Фактор B
B1 B2
A1 3 4, 5
A2 6, 6, 7 2

Если закодировать эти данные как выше и вычислить корреляционную матрицу для всех переменных, то окажется, что факторы плана коррелированы друг с другом. Факторы в плане теперь не ортогональны и такие планы называются несбалансированными. Заметим, что в рассматриваемом примере, корреляция между факторами полностью связана с различием частот 1 и -1 в столбцах матрицы данных. Другими словами, планы экспериментов с неравными объемами ячеек (точнее, непропорциональными объемами) будут несбалансированными, это означает, что главные эффекты и взаимодействия будут смешиваться. В этом случае для вычисления статистической значимости эффектов нужно полностью вычислять многомерную регрессию. Здесь имеется несколько стратегий.

Сумма квадратов типа I, II, III и IV

Сумма квадратов типа I и III . Для изучения значимости каждого фактора в многомерной модели можно вычислять частную корреляцию каждого фактора, при условии, что все другие факторы уже учтены в модели. Можно также вводить факторы в модель пошаговым способом, фиксируя все факторы, уже введенные в модель и игнорируя все остальные факторы. Вообще, в этом и состоит различие между типом III и типом I суммы квадратов (эта терминология была введена в SAS, см. например, SAS, 1982; подробное обсуждение можно также найти в Searle, 1987, стр. 461; Woodward, Bonett, and Brecht, 1990, стр. 216; или Milliken and Johnson, 1984, стр. 138).

Сумма квадратов типа II. Следующая “промежуточная” стратегия формирования модели состоит: в контроле всех главных эффектов при исследовании значимости отдельного главного эффекта; в контроле всех главных эффектов и всех попарных взаимодействий, когда исследуется значимость отдельного попарного взаимодействия; в контроле всех главных эффектов всех попарных взаимодействий и всех взаимодействий трех факторов; при исследовании отдельного взаимодействия трех факторов и т.д. Суммы квадратов для эффектов, вычисляемые таким способом, называются типом II суммы квадратов. Итак, тип II суммы квадратов контролирует все эффекты того же порядка и ниже, игнорируя все эффекты более высокого порядка.

Сумма квадратов типа IV . Наконец, для некоторых специальных планов с пропущенными ячейками (неполными планами) можно вычислять, так называемые, типа IV суммы квадратов. Этот метод будет обсуждаться позднее в связи с неполными планами (планами с пропущенными ячейками).

Интерпретация гипотезы о сумме квадратов типа I, II, и III

Сумму квадратов типа III легче всего интерпретировать. Напомним, что суммы квадратов типа III исследуют эффекты после контроля всех других эффектов. Например, после нахождения статистически значимого типа III эффекта для фактора A в модуле Дисперсионный анализ , можно сказать, что существует единственный значимый эффект фактора A , после введения всех других эффектов (факторов) и соответственно интерпретировать этот эффект. Вероятно в 99% всех приложений дисперсионного анализа именно этот тип критерия интересует исследователя. Этот тип суммы квадратов обычно вычисляется в модуле Дисперсионный анализ по умолчанию, независимо от того выбрана опция Регрессионный подход или нет (стандартные подходы принятые в модуле Дисперсионный анализ обсуждаются ниже).

Значимые эффекты, полученные с помощью сумм квадратов типа или типа II суммы квадратов интерпретировать не так легко. Лучше всего их интерпретировать в контексте пошаговой многомерной регрессии. Если при использовании суммы квадратов типа I главный эффект фактора В оказался значим (после включения в модель фактора А, но перед добавлением взаимодействия между А и В), можно заключить, что существует значимый главный эффект фактора В, при условии, что нет взаимодействия между факторами А и В. (Если при использовании критерия типа III , фактор В также оказался значимым, то можно заключить, что существует значимый главный эффект фактора B, после введения в модель всех других факторов и их взаимодействий).

В терминах маргинальных средних гипотезы типа I и типа II обычно не имеют простой интерпретации. В этих случаях говорят, что нельзя интерпретировать значимость эффектов, рассматривая только маргинальные средние. Скорее представленные p значений средних имеют отношение к сложной гипотезе, которая комбинирует средние и объем выборки. Например, тип II гипотезы для фактора А в простом примере плана 2 x 2, рассматриваемом ранее будут (см. Woodward, Bonett, and Brecht, 1990, стр. 219):

nij - число наблюдений в ячейке

uij - среднее значение в ячейке

n . j - маргинальное среднее

Если не вдаваться в детали (более подробно см. Milliken and Johnson, 1984, глава 10), то ясно, что это не простые гипотезы и в большинстве случаев ни одна из них не представляет особенного интереса у исследователя. Однако существуют случаи, когда гипотезы типа I могут быть интересны.

Принимаемый по умолчанию вычислительный подход в модуле Дисперсионный анализ

По умолчанию, если не отмечена опция Регрессионный подход , модуль Дисперсионный анализ использует модель средних по ячейкам . Для этой модели характерно, что суммы квадратов для разных эффектов вычисляются для линейных комбинаций средних значений по ячейкам. В полном факторном эксперименте это приводит к суммам квадратов, которые совпадают с суммами квадратов, обсуждаемыми ранее как тип III . Однако в опции Спланированные сравнения (в окне Результаты дисперсионного анализа ), пользователь может проверять гипотезу относительно любой линейной комбинации взвешенных или невзвешенных средних по ячейкам. Таким образом, пользователь может проверять не только гипотезы типа III , но гипотезы любого типа (включая тип IV ). Этот общий подход особенно полезен, когда исследуются планы с пропущенными ячейками (так называемые неполные планы).

Для полных факторных планов этот подход полезно также использовать в тех случаях, когда хотят анализировать взвешенные маргинальные средние. Например, предположим, что в рассматриваемом ранее простом 2 x 2 плане, нужно сравнить взвешенные (по уровням фактора B ) маргинальные средние для фактора А. Это бывает полезным, когда распределение наблюдений по ячейкам не готовилось экспериментатором, а строилось случайно, и эта случайность отражается в распределении числа наблюдений по уровням фактора B в совокупности.

Например, имеется фактор - возраст вдов. Возможная выборка респондентов разбита на две группы: моложе 40 лет и старше 40 (фактор В). Второй фактор (фактор А) в плане - получали или нет социальную поддержку вдовы в некотором агентстве (при этом одни вдовы были выбраны случайно, другие служили в качестве контроля). В этом случае распределение вдов по возрастам в выборке отражает действительное распределение вдов по возрастам в совокупности. Оценке эффективности группы социальной поддержки вдов по всем возрастам будет соответствовать взвешенное среднее для двух возрастных групп (с весами соответствующими числу наблюдений в группе).

Спланированные сравнения

Заметим, что сумма введенных коэффициентов контрастов не обязательно равна 0 (нулю). Вместо этого программа будет автоматически вносить поправки, чтобы соответствующие гипотезы не смешивались с общим средним.

Для иллюстрации этого вернемся опять к простому 2 x 2 плану, рассмотренному ранее. Напомним, что числа наблюдений в ячейках этого несбалансированного плана -1, 2, 3, и 1. Предположим, что мы хотим сравнить взвешенные маргинальные средние для фактора А (взвешенные с частотой уровней фактора В). Можно ввести коэффициенты контраста:

Заметим, что эти коэффициенты не дают в сумме 0. Программа будет устанавливать коэффициенты так, что в сумме они будут давать 0, и при этом будут сохраняться их относительные значения, т. е.:

1/3 2/3 -3/4 -1/4

Эти контрасты будут сравнивать взвешенные средние для фактора А.

Гипотезы о главном среднем. Гипотеза, о том, что не взвешенное главное среднее равно 0 может исследоваться с помощью коэффициентов:

Гипотеза о том, что взвешенное главное среднее равно 0 проверяется с помощью:

Ни в одном случае программа не производит корректировки коэффициентов контрастов.

Анализ планов с пропущенными ячейками (неполные планы)

Факторные планы, содержащие пустые ячейки (обработка комбинаций ячеек, в которых нет наблюдений) называются неполными. В таких планах некоторые факторы обычно не ортогональны и некоторые взаимодействия не могут быть вычислены. Вообще не существует лучшего метода анализа таких планов.

Регрессионный подход

В некоторых старых программах, которые основаны на анализе планов дисперсионного анализа с помощью многомерной регрессии, факторы в неполных планах по умолчанию задаются обычным образом (как будто план полный). Затем производится многомерный регрессионный анализ для этих фиктивно закодированных факторов. К несчастью, этот метод приводит к результатам, которые очень трудно, или даже невозможно, интерпретировать, так как неясно, как каждый эффект участвует в линейной комбинации средних значений. Рассмотрим следующий простой пример.

Фактор A Фактор B
B1 B2
A1 3 4, 5
A2 6, 6, 7 Пропущено

Если будет выполняться многомерная регрессия вида Зависимая переменная = Константа + Фактор A + Фактор B , то гипотеза о значимости факторов A и B в терминах линейных комбинаций средних выглядит так:

Фактор A: Ячейка A1,B1 = Ячейка A2,B1

Фактор B: Ячейка A1,B1 = Ячейка A1,B2

Этот случай прост. В более сложных планах невозможно фактически определить, что точно будет исследоваться.

Средние ячеек, подход дисперсионного анализа, гипотезы типа IV

Подход, который рекомендуется в литературе и который кажется предпочтительнее - исследование осмысленных (с точки зрения исследовательских задач) априорных гипотез о средних, наблюдаемых в ячейках плана. Подробное обсуждение этого подхода можно найти в Dodge (1985), Heiberger (1989), Milliken and Johnson (1984), Searle (1987), или Woodward, Bonett, and Brecht (1990). Суммы квадратов, ассоциированные с гипотезами о линейной комбинации средних в неполных планах, исследующие оценки части эффектов, называются также суммами квадратов IV .

Автоматическая генерация гипотез типа IV . Когда многофакторные планы имеют сложный характер пропущенных ячеек, желательно определить ортогональные (независимые) гипотезы, исследование которых эквивалентно исследованию главных эффектов или взаимодействий. Были развиты алгоритмические (вычислительные) стратегии (основанные на псевдообратной матрице плана) для генерирования подходящих весов для таких сравнений. К сожалению, окончательные гипотезы определяются не единственным образом. Конечно, они зависят от порядка, в котором эффекты были определены и редко допускают простую интерпретацию. Поэтому рекомендуется внимательно изучить характер пропущенных ячеек, затем формулировать гипотезы типа IV , которые наиболее содержательно соответствуют целям исследования. Затем исследовать эти гипотезы, используя опцию Спланированные сравнения в окне Результаты . Самый легкий путь задать сравнения в этом случае - требовать введения вектора контрастов для всех факторов вместе в окне Спланированные сравнения. После вызова диалогового окна Спланированные сравнения будут показаны все группы текущего плана и помечены те, которые пропущены.

Пропущенные ячейки и проверка специфического эффекта

Существует несколько типов планов, в которых расположение пропущенных ячеек не случайно, но тщательно спланировано, что позволяет проводить простой анализ главных эффектов не затрагивая другие эффекты. Например, когда необходимое число ячеек в плане недоступно, часто используются планы Латинские квадраты для оценивания главных эффектов нескольких факторов с большим числом уровней. Например, 4 x 4 x 4 x 4 факторный план требует 256 ячеек. В то же время можно использовать Греко-латинский квадрат для оценки главных эффектов, имея только 16 ячеек в плане (глава Планирование эксперимента , том IV, содержит детальное описание таких планов). Неполные планы, в которых главные эффекты (и некоторые взаимодействия) могут быть оценены с помощью простых линейных комбинаций средних, называются сбалансированными неполными планами .

В сбалансированных планах стандартный (по умолчанию) метод генерирования контрастов (весов) для главных эффектов и взаимодействий будет затем производить анализ таблицы дисперсий, в которой суммы квадратов для соответствующих эффектов не смешиваются друг с другом. Опция Специфический эффекты окна Результаты будет генерировать пропущенные контрасты, записывая ноль в пропущенные ячейки плана. Сразу после того, как будет запрошена опция Специфический эффекты для пользователя, изучающего некоторую гипотезу, появляется таблица результатов с фактическими весами. Заметим, что в сбалансированном плане, суммы квадратов соответствующих эффектов вычисляются только, если эти эффекты ортогональны (независимы) всем другим главным эффектам и взаимодействиям. В противном случае нужно воспользоваться опцией Спланированные сравнения для изучения содержательных сравнений между средними.

Пропущенные ячейки и объединенные эффекты/члены ошибки

Если опция Регрессионное подход в стартовой панели модуля Дисперсионный анализ не выбрана, то при вычислении суммы квадратов для эффектов будет использоваться модель средних по ячейкам (установка по умолчанию). Если план не сбалансирован, то при объединении неортогональных эффектов (см. выше обсуждение опции Пропущенные ячейки и специфический эффект ) можно получить сумму квадратов, состоящую из неортогональных (или перекрывающихся) компонент. Полученные при этом результаты, обычно не интерпретируемы. Поэтому нужно быть очень осторожным при выборе и реализации сложных неполных экспериментальных планов.

Существует много книг с детальным обсуждением планов разного типа. (Dodge, 1985; Heiberger, 1989; Lindman, 1974; Milliken and Johnson, 1984; Searle, 1987; Woodward and Bonett, 1990), но такого рода информация лежит вне границ этого учебника. Тем не менее, позднее в этом разделе будет продемонстрирован анализ различного типа планов.

Предположения и эффекты нарушения предположений

Отклонение от предположения о нормальности распределений

Предположим, что зависимая переменная измерена в числовой шкале. Предположим также, что зависимая переменная имеет нормальное распределение внутри каждой группы. Дисперсионный анализ содержит широкий набор графиков и статистик для обоснования этого предположения.

Эффекты нарушения. Вообще F критерий очень устойчив к отклонению от нормальности (подробные результаты см. в работе Lindman, 1974). Если эксцесс больше 0, то значение статистики F может стать очень маленьким. Нулевая гипотеза при этом принимается, хотя она может быть и не верна. Ситуация меняется на противоположную, когда эксцесс меньше 0. Асимметрия распределения обычно незначительно влияет на F статистику. Если число наблюдений в ячейке достаточно большое, то отклонение от нормальности не имеет особого значения в силу центральной предельной теоремы , в соответствии с которой, распределение среднего значения близко к нормальному, независимо от начального распределения. Подробное обсуждение устойчивости F статистики можно найти в Box and Anderson (1955), или Lindman (1974).

Однородность дисперсии

Предположения. Предполагается, что дисперсии разных групп плана одинаковы. Это предположение называется предположением об однородности дисперсии. Вспомним, что в начале этого раздела, описывая вычисление суммы квадратов ошибок, мы производили суммирование внутри каждой группы. Если дисперсии в двух группах отличаются друг от друга, то сложение их не очень естественно и не дает оценки общей внутригрупповой дисперсии (так как в этом случае общей дисперсии вообще не существует). Модуль Дисперсионный анализ - ANOVA /MANOVA содержит большой набор статистических критериев обнаружения отклонения от предположений однородности дисперсии.

Эффекты нарушения. Линдман (Lindman 1974, стр. 33) показывает, что F критерий вполне устойчив относительно нарушения предположений однородности дисперсии (неоднородность дисперсии, см. также Box, 1954a, 1954b; Hsu, 1938).

Специальный случай: коррелированность средних и дисперсий. Бывают случаи, когда F статистика может вводить в заблуждение. Это бывает, когда в ячейках плана средние значения коррелированы с дисперсией. Модуль Дисперсионный анализ позволяет строить диаграммы рассеяния дисперсии или стандартного отклонения относительно средних для обнаружения такой корреляции. Причина, по которой такая корреляция опасна, состоит в следующем. Представим себе, что имеется 8 ячеек в плане, 7 из которых имеют почти одинаковое среднее, а в одной ячейке среднее намного больше остальных. Тогда F критерий может обнаружить статистически значимый эффект. Но предположим, что в ячейке с большим средним значением и дисперсия значительно больше остальных, т.е. среднее значение и дисперсия в ячейках зависимы (чем больше среднее, тем больше дисперсия). В этом случае большое среднее значение ненадежно, так как оно может быть вызвано большой дисперсией данных. Однако F статистика, основанная на объединенной дисперсии внутри ячеек, будет фиксировать большое среднее, хотя критерии, основанные на дисперсии в каждой ячейке, не все различия в средних будут считать значимыми.

Такой характер данных (большое среднее и большая дисперсия) - часто встречается, когда имеются резко выделяющиеся наблюдения. Одно или два резко выделяющихся наблюдений сильно смещают среднее значение и очень увеличивают дисперсию.

Однородность дисперсии и ковариаций

Предположения. В многомерных планах, с многомерными зависимыми измерениями, также применяются предположение об однородности дисперсии, описанные ранее. Однако так как существуют многомерные зависимые переменные, то требуется так же чтобы их взаимные корреляции (ковариации) были однородны по всем ячейкам плана. Модуль Дисперсионный анализ предлагает разные способы проверки этих предположений.

Эффекты нарушения . Многомерный аналог F - критерия - λ-критерий Уилкса. Не так много известно об устойчивости (робастности) λ-критерия Уилкса относительно нарушения указанных выше предположений. Тем не менее, так как интерпретация результатов модуля Дисперсионный анализ основывается обычно на значимости одномерных эффектов (после установления значимости общего критерия), обсуждение робастности касается, в основном, одномерного дисперсионного анализа. Поэтому должна быть внимательно исследована значимость одномерных эффектов.

Специальный случай: ковариационный анализ. Особенно серьезные нарушения однородности дисперсии/ковариаций могут происходить, когда в план включаются ковариаты. В частности, если корреляция между ковариатами и зависимыми измерениями различна в разных ячейках плана, может последовать неверное истолкование результатов. Следует помнить, что в ковариационном анализе, в сущности, проводится регрессионный анализ внутри каждой ячейки для того, чтобы выделить ту часть дисперсии, которая соответствует ковариате. Предположение об однородности дисперсии/ковариации предполагает, что этот регрессионный анализ проводится при следующем ограничении: все регрессионные уравнения (наклоны) для всех ячеек одинаковы. Если это не предполагается, то могут появиться большие ошибки. Модуль Дисперсионный анализ имеет несколько специальных критериев для проверки этого предположения. Можно посоветовать использовать эти критерии, для того, чтобы убедиться, что регрессионные уравнения для различных ячеек примерно одинаковы.

Сферичность и сложная симметрия: причины использования многомерного подхода к повторным измерениям в дисперсионном анализе

В планах, содержащих факторы повторных измерений с более чем двумя уровнями, применение одномерного дисперсионного анализа требует дополнительных предположений: предположения о сложной симметрии и предположения о сферичности. Эти предположения редко выполняются (см. ниже). Поэтому в последние годы многомерный дисперсионный анализ завоевал популярность в таких планах (оба подхода совмещены в модуле Дисперсионный анализ ).

Предположение о сложной симметрии Предположение о сложной симметрии состоит в том, что дисперсии (общие внутригрупповые) и ковариации (по группам) для различных повторных измерений однородны (одинаковы). Это достаточное условие для того, чтобы одномерный F критерий для повторных измерений был обоснованным (т.е. выданные F-значения в среднем соответствовали F-распределению). Однако в данном случае это условие не является необходимым.

Предположение о сферичности. Предположение о сферичности является необходимым и достаточным условием того, чтобы F-критерий был обоснованным. Оно состоит в том, что внутри групп все наблюдения независимы и одинаково распределены. Природа этих предположений, а также влияние их нарушений обычно не очень хорошо описаны в книгах по дисперсионному анализу - эта будет описано в следующих параграфах. Там же будет показано, что результаты одномерного подхода могут отличаться от результатов многомерного подхода, и будет объяснено, что это означает.

Необходимость независимости гипотез. Общий способ анализа данных в дисперсионном анализе – это подгонка модели . Если относительно модели, соответствующей данным, имеются некоторые априорные гипотезы, то дисперсия разбивается для проверки этих гипотез (критерии главных эффектов, взаимодействий). С точки зрения вычислений, этот подход генерирует некоторое множество контрастов (множество сравнений средних в плане). Однако если контрасты не независимы друг от друга, разбиение дисперсий становится бессодержательным. Например, если два контраста A и B тождественны и выделяется соответствующая им часть из дисперсии, то одна и та же часть выделяется дважды. Например, глупо и бессмысленно выделять две гипотезы: “среднее в ячейке 1 выше среднего в ячейке 2” и “среднее в ячейке 1 выше среднего в ячейке 2”. Итак, гипотезы должны быть независимы или ортогональны.

Независимые гипотезы при повторных измерениях. Общий алгоритм, реализованный в модуле Дисперсионный анализ , будет пытаться для каждого эффекта генерировать независимые (ортогональные) контрасты. Для фактора повторных измерений эти контрасты задают множество гипотез относительно разностей между уровнями рассматриваемого фактора. Однако если эти разности коррелированы внутри групп, то результирующие контрасты не являются больше независимыми. Например, в обучении, где обучающиеся измеряются три раза за один семестр, может случиться, что изменения между 1 и 2 измерением отрицательно коррелируют с изменением между 2 и 3 измерениями субъектов. Те, кто большую часть материала освоил между 1 и 2 измерениями, осваивают меньшую часть в течение того времени, которое прошло между 2 и 3 измерением. В действительности, для большинства случаев, где дисперсионный анализ используются при повторных измерениях, можно предположить, что изменения по уровням коррелированы по субъектам. Однако когда это случается, предположение о сложной симметрии и предположения о сферичности не выполняются и независимые контрасты не могут быть вычислены.

Влияние нарушений и способы их исправления. Когда предположения о сложной симметрии или о сферичности не выполняются, дисперсионный анализ может выдать ошибочные результаты. До того, как были достаточно разработаны многомерные процедуры, было предложено несколько предположений для компенсации нарушений этих предположений. (см., например, работы Greenhouse & Geisser, 1959 и Huynh & Feldt, 1970). Эти методы до сих пор широко используются (поэтому они представлены в модуле Дисперсионный анализ ).

Подход многомерного дисперсионного анализа к повторным измерениям. В целом проблемы сложной симметрии и сферичности относятся к тому факту, что множества контрастов, включенных в исследование эффектов факторов повторных измерений (с числом уровней большим, чем 2) не независимы друг от друга. Однако им не обязательно быть независимыми, если используется многомерный критерий для одновременной проверки статистического значимости двух или более контрастов фактора повторных измерений. Это является причиной того, что методы многомерного дисперсионного анализа стали чаще использоваться для проверки значимости факторов одномерных повторных измерений с более чем 2 уровнями. Этот подход широко распространен, так как он, в общем случае, не требует предположения о сложной симметрии и предположения о сферичности.

Случаи, в которых подходмногомерного дисперсионного анализа не может быть использован. Существуют примеры (планы), когда подход многомерного дисперсионного анализа не может быть применен. Обычно это случаи, когда имеется небольшое количество субъектов в плане и много уровней в факторе повторных измерений. Тогда для проведения многомерного анализа может быть слишком мало наблюдений. Например, если имеется 12 субъектов, p = 4 фактора повторных измерений, и каждый фактор имеет k = 3 уровней. Тогда взаимодействие 4-х факторов будет “расходовать”(k -1)P = 2 4 = 16 степеней свободы. Однако имеется лишь 12 субъектов, следовательно, в этом примере многомерный тест не может быть проведен. Модуль Дисперсионный анализ самостоятельно обнаружит эти наблюдения и вычислит только одномерные критерии.

Различия в одномерных и многомерных результатах. Если исследование включает большое количество повторных измерений, могут возникнуть случаи, когда одномерный подход дисперсионного анализа к повторным измерениям дает результаты, сильно отличающиеся от тех, которые были получены при многомерном подходе. Это означает, что разности между уровнями соответствующих повторных измерений коррелированы по субъектам. Иногда этот факт представляет некоторый самостоятельный интерес.

Многомерный дисперсионный анализ и структурное моделирование уравнений

В последние годы моделирование структурных уравнений стало популярным, как альтернатива многомерному анализу дисперсии (см. например, Bagozzi and Yi, 1989; Bagozzi, Yi, and Singh, 1991; Cole, Maxwell, Arvey, and Salas, 1993). Этот подход позволяет проверять гипотезы не только о средних в разных группах, но так же и о корреляционных матрицах зависимых переменных. Например, можно ослабить предположения об однородности дисперсии и ковариаций и явно включить в модель для каждой группы дисперсии и ковариации ошибки. Модуль STATISTICA Моделирование структурными уравнениями (SEPATH ) (см. том III) позволяет проводить такой анализ.

Рассмотренная схема дисперсионного анализа дифференцируется в зависимости: а) от характера признака, по которому совокупность подразделена на группы (выборки;) ;б) от числа признаков, по которым совокупность подразделяется на группы (выборки) ; в) от способа формирования выборок.

Значения признака. который подразделяет совокупность на группы могут представлять собой генеральную или близкую к ней по численности совокупность. В этом случае схема проведения дисперсионного анализа соответствует выше рассмотренной. Если же значения признака, который формирует разные группы представляют собой выборку из генеральной совокупности, то меняется постановка нулевой и альтернативной гипотез. В качестве нулевой гипотезы выдвигается предположение, что между группами присутствуют различия, то есть групповые средние обнаруживают некоторую вариацию. В качестве альтернативной гипотезы выдвигается предположение, что колеблемость отсутствует. Очевидно, что при такой постановке гипотез нет оснований проводить конкретизацию результатов сопоставления дисперсий.

При увеличении числа группировочных признаков, например, до 2-х во- первых возрастает число нулевых и соответственно альтернативных гипотез. В этом случае первая нулевая гипотеза говорит об отсутствии различий между средними по группам первого группировочного признака, вторая нулевая гипотеза говорит об отсутствии различий в средних по группам второго группировочного признака и наконец третья нулевая гипотеза говорит об отсутствии так называемого эффекта взаимодействия факторов (группировочных признаков).

По эффектом взаимодействия понимается такое изменение значения результативного признака, которое не может быть объяснено суммарным действием двух факторов. Для проверки трех выдвинутых пар гипотез необходим расчет трех фактических значений критерия F- Фишера, что в свою очередь предполагает следующий вариант разложения общего объема вариации

Необходимые для получения F- критерия дисперсии получают известным способом поделив объемы вариации на число степеней свободы.

Как известно, выборки могут быть зависимыми независимыми. Если выборки зависимые, то в общем объеме вариации следует выделить так называемую вариацию по повторностям
. Если ее не выделить, то эта вариация может существенно увеличить вариацию внутригрупповую (
), что может исказить результаты дисперсионного анализа.

Вопросы для повторения

17-1.В чем состоит конкретизация результатов дисперсионного анализа?

17-2. В каком случае для конкретизации используется критерий Q-Тьюки?

17-3.Что представляют собой разницы первого, второго и так далее порядков?

17-4. Как найти фактическое значение критерия Q-Тьюки?

17-5.Какие гипотезы выдвигается относительно каждой разницы?

17-6. От чего зависит табличное значение критерия Q-Тьюки?

17-7. Какова будет нулевая гипотеза, если уровни группировочного признака представляют собой выборку?

17-8.Как раскладывается общий объем вариации при группировке данных по двум признакам?

17-9. В каком случае выделяется вариация по повторностям (
) ?

Резюме

Рассмотренный механизм конкретизации результатов дисперсионного анализа позволяет придать ему законченный вид. Следует обратить внимание на ограничения при использовании критерия Q-Тьюки. В материале были изложены также основные принципы классификации моделей дисперсионного анализа. Необходимо подчеркнуть, что это всего лишь принципы. Детальное изучение особенностей каждой модели требует отдельного более глубокого изучения.

Тестовые задания к лекции

Относительно каких статистических характеристик выдвигаются гипотезы при дисперсионном анализе?

    Относительно двух дисперсий

    Относительно одной средней

    Относительно нескольких средних

    Относительно одной дисперсии

В чем состоит содержание альтернативной гипотезы при дисперсионном анализе?

    Сравниваемые дисперсии не равны между собой

    Все сравниваемые средние не равны между собой

    Хотя бы две генеральные средние не равны между собой

    Межгрупповая дисперсии больше дисперсии внутригрупповой

Какие уровни значимости наиболее часто используемы при дисперсионном анализе

Если внутригрупповая вариация больше вариации межгрупповой, следует ли продолжать дисперсионный анализ или сразу согласиться с Н0 либо с НА?

1. Следует продолжить, определив необходимые дисперсии?

2. Следует согласиться с Н0

3. Следует согласиться с НА

Если внутригрупповая дисперсия оказалась равной межгрупповой, каковы должны последовать действия, проводящего дисперсионный анализ?

    Согласиться с нулевой гипотезой о равенстве генеральных средних

    Согласиться с альтернативной гипотезой о наличии хотя бы пары средних неравных между собой

Какая дисперсия всегда должна быть в числителе при расчете критерия F-Фишера?

    Только внутригрупповая

    В любом случае межгрупповая

    Межгрупповая, если она больше внутригрупповой

Каково должно быть фактическое значение критерия F-Фишера?

    Всегда меньше 1

    Всегда больше 1

    Равным или больше 1

От чего зависит табличное значение критерия F-Фишера?

1.От принятого уровня значимости

2. От числа степеней свободы общей вариации

3. От числа степеней свободы межгрупповой вариации

4. От числа степеней свободы внутригрупповой вариации

5. От величины фактического значения критерия F-Фишера?

Увеличение числа наблюдений в каждой группе при равенстве дисперсий повышает вероятность принятия ……

1.Нулевой гипотезы

2.Альтернативной гипотезы

3.Не влияет на принятие как нулевой,так и альтернативной гипотезы

В чем смысл конкретизации результатов дисперсионного анализа?

    Уточнить верно ли проведены расчеты дисперсий

    Установить какие из генеральных средних оказались равными между собой

    Уточнить какие из генеральных средних не равны между собой

Верно ли высказывание: « При конкретизации результатов дисперсионного анализа все средние генеральные оказались равными между собой»

    Может быть верным и неверным

    Не верно, это может иметь место вследствие допущенных ошибок в расчетах

Можно ли при конкретизации дисперсионного анализа прийти к выводу, что все генеральные средние не равны между собой?

1. Вполне возможно

2. Возможно в исключительных случаях

3. Невозможно в принципе.

4. Возможно только при допущении ошибок в расчетах

Если по критерию F-Фишера была принята нулевая гипотеза требуется ли конкретизация дисперсионного анализа?

1.Требуется

2.Не требуется

3.По усмотрению проводящего дисперсионный анализ

В каком случае для конкретизации результатов дисперсионного анализа используется критерий Тьюки.?

1. Если число наблюдений по группам (выборкам) одинаково

2. Если число наблюдений по группам (выборкам) разное

3.Если имеются выборки как с равными,так и с неравными чис-

ленностями

Что представляет собой НСР при конкретизации результатов дисперсионного анализа на основе критерия Тьюки?

1.Произведение средней ошибки на фактическое значение критерия

2. Произведение средней ошибки на табличное значение критерия

3. Отношение каждой разницы между выборочными средними к

средней ошибке

4. Разность между выборочными средними

Если выборочная совокупность разбита на группы по 2- признакам на сколько источников как минимум должна быть разбита общая вариация признака?

Если наблюдения по выборкам (группам) являются зависимыми, на сколько источников должна быть разбита общая вариация (группировочный признак один) ?

Каков источник (причина) межгрупповой вариации?

    Игра случая

    Совместное действие игры случая и фактора

    Действие фактора (факторов)

    Выяснится после проведения дисперсионного анализа

Каков источник (причина) внутригрупповой вариации?

1.Игра случая

2.Совместное действие игры случая и фактора

3.Действие фактора (факторов)

4. Выяснится после проведения дисперсионного анализа

Какой способ преобразования исходных данных используется, если значения признака выражены в долях?

    Логарифмирование

    Извлечение корня

    Фи- преобразование

Лекция 8 Корреляция

Аннотация

Важнейшим методом изучения связи между признаками является метод корреляции. В данной лекции раскрывается содержание этого метода, подходы к аналитическому выражению этой связи. Особое внимание уделяется таким специфическим показателям, как показатели тесноты связи

Ключевые слова

Корреляция. Метод наименьших квадратов. Коэффициент регрессии. Коэффициенты детерминации и корреляции.

Рассматриваемые вопросы

    Связь функциональная и корреляционная

    Этапы построения корреляционного уравнения связи. Интерпретация коэффициентов уравнения

    Показатели тесноты связи

    Оценка выборочных показателей связи

Модульная единица 1 Сущность корреляционной связи. Этапы построения корреляционного уравнения связи, интерпретация коэффициентов уравнения.

Цель и задачи изучения модульной единицы 1 состоят в уяснении особенностей корреляционной связи. освоении алгоритма построения уравнения связи, уяснении содержания коэффициентов уравнения.

      Сущность корреляционной связи

В природных и общественных явлениях имеют место два типа связей – связь функциональная и связь корреляционная. При функциональной связи каждому значению аргумента соответствуют строго определенные (одно или несколько) значений функции. Примером функциональной связи может служить связь между длиной окружности и радиусом, которая выражается уравнением
. Каждому значению радиусаr соответствует единственное значение длины окружности L . При корреляционной связи каждому значению факторного признака соответствует несколько не вполне определенных значений результативного признака. Примерами корреляционной связи может служить связь между весом человека (результативный признак) и его ростом (признак факторный), связь между количеством внесенных удобрений и урожайностью, между ценой и количеством предлагаемого товара. Источником возникновения корреляционной связи является то обстоятельство, что,как правило, в реальной жизни значение результативного признака зависит от множества факторов, в том числе имеющих случайный характер своего изменения. Например, тот же вес человека зависит от возраста, пола., питания, рода занятий и множества других факторов. Но вместе с тем, очевидно, что в целом решающим фактором является именно рост. Ввиду указанных обстоятельств корреляционную связь следует определить как связь неполную, которую можно установить и оценить только при наличии большого числа наблюдений, в среднем.

1.2 Этапы построения корреляционного уравнения связи .

Как и функциональная связь, корреляционная связь выражается уравнением связи. Для его построения необходимо последовательно пройти следующие шаги (этапы).

Вначале следует уяснить причинно-следственные связи, выяснить соподчиненность признаков, то есть какие из них являются причинами (факторными признаками) , а какие следствием (признаками результативными). Причинно- следственные отношения между признаками устанавливаются теорией того предмета, где используется метод корреляции. Например, наука «анатомия человека» позволяет сказать каков источник взаимосвязи между весом и ростом, какой из этих признаков является фактором, какой результатом, наука «экономика» раскрывает логику взаимосвязи цены и предложения, устанавливает что и на каком этапе является причиной, а что следствием. Без такого предварительного теоретического обоснования интерпретация полученных в дальнейшем результатов затруднена, а иногда может привести к абсурдным выводам.

Установив наличие причинно- следственных отношений, далее следует эти отношения формализовать, то есть выразить с помощью уравнения связи, при этом сначала надо выбрать вид уравнения. Для выбора вида уравнения можно рекомендовать ряд приемов. Можно обратиться к теории того предмета, где используется метод корреляции, скажем наука «агрохимия» возможно уже получила ответ на вопрос каким уравнением следует выразить связь: урожайность – удобрения. Если такого ответа нет, то для выбора уравнения следует воспользоваться некими эмпирическими данными соответствующим образом их обработав. Сразу следует сказать, что выбрав вид уравнения на основе эмпирических данных, надо ясно представлять, что этот вид уравнения может быть использован для описания связи использованных данных. Основным приемом обработки этих данных является построение графиков, когда на оси абсцисс откладываются значения факторного признака, а на оси ординат возможные значения признака результативного. Поскольку по определению одному и тому же значению факторного признака соответствует множество неопределенных значений признака результативного, в результате указанных выше действий мы получим некоторую совокупность точек которая получила название корреляционного поля. Общий вид корреляционного поля позволяет в ряде случаев высказать предположение о возможном виде уравнения.. При современном развитии вычислительной техники одним из основных приемов выбора уравнения является перебор различных видов уравнений, при этом в качестве наилучшего выбирают то уравнение, которое обеспечивает самый высокий коэффициент детерминации, речь о котором пойдет ниже. Прежде чем перейти к расчетам надо проверить насколько привлекаемые для построения уравнения эмпирические данные удовлетворяют неким требованиям. Требования относятся к факторным признакам и к совокупности данных. Факторные признаки, если их несколько, должны быть независимыми друг от друга. Что касается совокупности то она должна быть во- первых однородна

(понятие однородности рассматривалось ранее), а во- вторых достаточно большой. На каждый факторный признак должно приходится не менее чем 8-10 наблюдений.

После выбора уравнения следующим шагом является расчет коэффициентов уравнения. Расчет коэффициентов уравнения чаще всего производится на основе метода наименьших квадратов. С точки зрения корреляции использование метода наименьших квадратов состоит в получении таких коэффициентов уравнения, чтобы
=min, то есть чтобы сумма квадратов отклонений фактических значений результативного признака () от расчетных по уравнению () была величиной минимальной. Это требование реализуется построением и решением известной системы так называемых нормальных уравнений. Если в качестве уравнения корреляционной связи междуy и x выбрано уравнение прямой
, где система нормальных уравнений, как известно будет такой:

Решая эту систему относительно a и b , получим необходимые значения коэффициентов. Правильность расчета коэффициентов проверяется равенством

Применение статистики в этой заметке будет показано на сквозном примере. Предположим, что вы - руководитель производства в компании Perfect Parachute («Идеальный парашют»). Парашюты изготавливаются из синтетических волокон, поставляемых четырьмя разными поставщиками. Одной из основных характеристик парашюта является его прочность. Вам необходимо убедиться, что все поставляемые волокна обладают одинаковой прочностью. Чтобы ответить на этот вопрос, следует разработать схему эксперимента, в ходе которого измеряется прочность парашютов, сотканных из синтетических волокон разных поставщиков. Информация, полученная в ходе этого эксперимента, позволит определить, какой поставщик обеспечивают наибольшую прочность парашютов.

Многие приложения связаны с экспериментами, в которых рассматривается несколько групп или уровней одного фактора. Некоторые факторы, например, температура обжига керамики, могут иметь несколько числовых уровней (т.е. 300°, 350°, 400° и 450°). Другие факторы, например, местоположение товаров в супермаркете, могут иметь категориальные уровни (например, первый поставщик, второй поставщик, третий поставщик, четвертый поставщик). Однофакторные эксперименты, в ходе которых экспериментальные единицы случайным образом распределяются по группам или уровням фактора, называются полностью рандомизированными.

Использование F -критерия для оценки разностей между несколькими математическими ожиданиями

Если числовые измерения фактора в группах являются непрерывными и выполняются некоторые дополнительные условия, для сравнения математических ожиданий нескольких групп применяется дисперсионный анализ (ANOVA - An alysis o f Va riance). Дисперсионный анализ, использующий полностью рандомизированные планы, называется однофакторной процедурой ANOVA. В некотором смысле термин дисперсионный анализ является неточным, поскольку при этом анализе сравниваются разности между математическими ожиданиями групп, а не между дисперсиями. Однако сравнение математических ожиданий осуществляется именно на основе анализа вариации данных. В процедуре ANOVA полная вариация результатов измерений подразделяется на межгрупповую и внутригрупповую (рис. 1). Внутригрупповая вариация объясняется ошибкой эксперимента, а межгрупповая - эффектами условий эксперимента. Символ с обозначает количество групп.

Рис. 1. Разделение вариации в полностью рандомизированном эксперименте

Скачать заметку в формате или , примеры в формате

Предположим, что с групп извлечено из независимых генеральных совокупностей, имеющих нормальное распределение и одинаковую дисперсию. Нулевая гипотеза заключается в том, что математические ожидания генеральных совокупностей одинаковы: Н 0: μ 1 = μ 2 = … = μ с . Альтернативная гипотеза гласит, что не все математические ожидания одинаковы: Н 1 : не все μ j одинаковы j = 1, 2, …, с).

На рис. 2 представлена истинная нулевая гипотеза о математических ожиданиях пяти сравниваемых групп при условии, что генеральные совокупности имеют нормальное распределение и одинаковую дисперсию. Пять генеральных совокупностей, связанных с разными уровнями фактора, идентичны. Следовательно, они накладываются одна на другую, имея одинаковые математическое ожидание, вариацию и форму.

Рис. 2. Пять генеральных совокупностей имеют одинаковое математическое ожидание: μ 1 = μ 2 = μ 3 = μ 4 = μ 5

С другой стороны, предположим, что на самом деле нулевая гипотеза является ложной, причем четвертый уровень имеет наибольшее математическое ожидание, первый уровень - чуть меньшее математическое ожидание, а остальные уровни - одинаковые и еще меньшие математические ожидания (рис. 3). Обратите внимание на то, что за исключением величины математических ожиданий все пять генеральных совокупностей идентичны (т.е. имеют одинаковую изменчивость и форму).

Рис. 3. Наблюдается эффект условий эксперимента: μ 4 > μ 1 > μ 2 = μ 3 = μ 5

При проверке гипотезы о равенстве математических ожиданий нескольких генеральных совокупностей полная вариация разделяется на две части: межгрупповую вариацию, обусловленную разностями между группами, и внутригрупповую, обусловленную разностями между элементами, принадлежащими одной группе. Полная вариация выражается полной суммой квадратов (SST – sum of squares total). Поскольку нулевая гипотеза заключается в том, что математические ожидания всех с групп равны между собой, полная вариация равна сумме квадратов разностей между отдельными наблюдениями и общим средним (среднее средних) , вычисленным по всем выборкам. Полная вариация:

где - общее среднее, X ij - i -e наблюдение в j -й группе или уровне, n j - количество наблюдений в j -й группе, n - общее количество наблюдений во всех группах (т.е. n = n 1 + n 2 + … + n c ), с - количество изучаемых групп или уровней.

Межгрупповая вариация , называемая обычно межгрупповой суммой квадратов (SSA – sum of squares among groups), равна сумме квадратов разностей между выборочным средним каждой группы j и общим средним , умноженных на объем соответствующей группы n j :

где с - количество изучаемых групп или уровней, n j - количество наблюдений в j -й группе, j - среднее значение j -й группы, - общее среднее.

Внутригрупповая вариация , называемая обычно внутригрупповой суммой квадратов (SSW – sum of squares withing groups), равна сумме квадратов разностей между элементами каждой группы и выборочным средним этой группы j :

где Х ij - i -й элемент j -й группы, j - среднее значение j -й группы.

Поскольку сравнению подвергаются с уровней фактора, межгрупповая сумма квадратов имеет с – 1 степеней свободы. Каждый из с уровней обладает n j – 1 степенями свободы, поэтому внутригрупповая сумма квадратов имеет n – с степеней свободы, и

Кроме того, общая сумма квадратов имеет n – 1 степеней свободы, поскольку каждое наблюдение Х ij сравнивается с общим средним , вычисленным по всем n наблюдениям. Если каждую из этих сумм разделить на соответствующее количество степеней свободы, возникнут три вида дисперсии: межгрупповая (mean square among - MSA), внутригрупповая (mean square within - MSW) и полная (mean square total - MST):

Несмотря на то что основное предназначение дисперсионного анализа - сравнить математические ожидания с групп, чтобы выявить эффект условий эксперимента, его название обусловлено тем, что главным инструментом является анализ дисперсий разного типа. Если нулевая гипотеза является истинной, и между математическими ожиданиями с групп нет существенных различий, все три дисперсии - MSA, MSW и MST - являются оценками дисперсии σ 2 , присущей анализируемым данным. Таким образом, чтобы проверить нулевую гипотезу Н 0: μ 1 = μ 2 = … = μ с и альтернативную гипотезу Н 1 : не все μ j одинаковы j = 1, 2, …, с ), необходимо вычислить статистику F -критерия, представляющую собой отношение двух дисперсий, MSA и MSW. Тестовая F -статистика в однофакторном дисперсионном анализе

Статистика F -критерия подчиняется F -распределению с с – 1 степенями свободы в числителе MSA и n – с степенями свободы в знаменателе MSW . При заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F F U , присущего F -распределению с с – 1 n – с степенями свободы в знаменателе. Таким образом, как показано на рис. 4, решающее правило формулируется следующим образом: нулевая гипотеза Н 0 отклоняется, если F > F U ; в противном случае она не отклоняется.

Рис. 4. Критическая область дисперсионного анализа при проверке гипотезы Н 0

Если нулевая гипотеза Н 0 является истинной, вычисленная F -статистика близка к 1, поскольку ее числитель и знаменатель являются оценками одной и той же величины - дисперсии σ 2 , присущей анализируемым данным. Если нулевая гипотеза Н 0 является ложной (и между математическими ожиданиями разных групп существует значительная разница), вычисленная F -статистика будет намного больше единицы, поскольку ее числитель, MSA, помимо естественной изменчивости данных, оценивает эффект условий эксперимента или разности между группами, в то время как знаменатель MSW оценивает лишь естественную изменчивость данных. Таким образом, процедура ANOVA представляет собой F -критерий, в котором при заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F -статистика больше верхнего критического значения F U , присущего F -распределению с с – 1 степенями свободы в числителе и n – с степенями свободы в знаменателе, как показано на рис. 4.

Для иллюстрации однофакторного дисперсионного анализа вернемся к сценарию, изложенному в начале заметки. Цель эксперимента - определить, имеют ли парашюты, сотканные из синтетического волокна, полученного от разных поставщиков, одинаковую прочность. В каждой из групп соткано по пять парашютов. Группы разделены по поставщикам- Поставщик 1, Поставщик 2, Поставщик 3 и Поставщик 4. Прочность парашютов измеряется с помощью специального устройства, испытывающего ткань на разрыв с двух сторон. Сила, необходимая для разрыва парашюта, измеряется по особой шкале. Чем выше сила разрыва, тем прочнее парашют. Excel позволяет провести анализ F -статистики одним кликом. Пройдите по меню Данные Анализ данных , и выберите строку Однофакторный дисперсионный анализ , заполните открывшееся окно (рис. 5). Результаты эксперимента (сила разрыва), некоторые описательные статистики и результаты однофакторного дисперсионного анализа представлены на рис. 6.

Рис. 5. Окно Однофакторный дисперсионный анализ Пакета анализа Excel

Рис. 6. Показатели прочности парашютов, сотканных из синтетических волокон, полученных от разных поставщиков, описательные статистики и результаты однофакторного дисперсионного анализа

Анализ рисунка 6 показывает, что между выборочными средними наблюдается некоторая разница. Средняя прочность волокон, полученных от первого поставщика, равна 19,52, от второго - 24,26, от третьего - 22,84 и от четвертого - 21,16. Можно ли назвать эту разницу статистически значимой? Распределение силы разрыва продемонстрировано на диаграмме разброса (рис. 7). На ней ясно видны разности как между группами, так и внутри них. Если бы объем каждой группы был больше, для их анализа можно было бы применить диаграмму «ствол и листья», блочную диаграмму или график нормального распределения.

Рис. 7. Диаграмма разброса прочности парашютов, сотканных из синтетических волокон, полученных от четырех поставщиков

Нулевая гипотеза утверждает, что между средними показателями прочности нет существенных различий: Н 0: μ 1 = μ 2 = μ 3 = μ 4 . Альтернативная гипотеза заключается в том, что существует по крайней мере один поставщик, у которого средняя прочность волокон отличается от других: Н 1 : не все μ j одинаковы (j = 1, 2, …, с ).

Общее среднее (см. рис. 6) =СРЗНАЧ(D12:D15) = 21,945; для определения также можно усреднить все 20 исходных чисел: =СРЗНАЧ(A3:D7). Значения дисперсий рассчитываются Пакетом анализа и отражаются в табличке Дисперсионный анализ (см. рис. 6): SSA = 63,286, SSW = 97,504, SST = 160,790 (см. колонку SS таблицы Дисперсионный анализ рисунка 6). Средние значения вычисляются путем деления этих сумм квадратов на соответствующее количество степеней свободы. Поскольку с = 4, а n = 20, получаем следующие значения степеней свободы; для SSA: с – 1 = 3; для SSW: n – c = 16; для SST: n – 1 = 19 (см. колонку df ). Таким образом: MSA = SSA / (с – 1) = 21,095; MSW = SSW / (n – c ) = 6,094; MST = SST / (n – 1 ) = 8,463 (см. колонку MS ). F -статистика = MSA / MSW = 3,462 (см. колонку F ).

Верхнее критическое значение F U , характерное для F -распределения, определяется по формуле =F.ОБР(0,95;3;16) = 3,239. Параметры функции =F.ОБР(): α = 0,05, числитель имеет три степени свободы, а знаменатель - 16. Таким образом, вычисленная F -статистика, равная 3,462, превышает верхнее критическое значение F U = 3,239, нулевая гипотеза отклоняется (рис. 8).

Рис. 8. Критическая область дисперсионного анализа при уровне значимости, равном 0,05, если числитель имеет три степени свободы, а знаменатель -16

р -значение, т.е. вероятность того, что при истинной нулевой гипотезе F -статистика не меньше 3,46, равно 0,041 или 4,1% (см. колонку р-Значение таблицы Дисперсионный анализ рисунка 6). Поскольку эта величина не превышает уровень значимости α = 5%, нулевая гипотеза отклоняется. Более того, р -значение свидетельствует о том, что вероятность обнаружить такую или большую разность между математическими ожиданиями генеральных совокупностей при условии, что на самом деле они одинаковы, равна 4,1%.

Итак. Между четырьмя выборочными средними существует разница. Нулевая гипотеза заключалась в том, что все математические ожидания четырех генеральных совокупностей равны между собой. В этих условиях мера полной изменчивости (т.е. полная вариация SST) прочности всех парашютов вычисляется путем суммирования квадратов разностей между каждым наблюдением X ij и общим средним . Затем полная вариация разделялась на два компонента (см. рис. 1). Первый компонент представлял собой межгрупповую вариацию SSA, а второй - внутригрупповую SSW.

Чем объясняется изменчивость данных? Иначе говоря, почему все наблюдения не одинаковы? Одна из причин заключается в том, что разные фирмы поставляют волокна разной прочности. Это частично объясняет, почему группы имеют разные математические ожидания: чем сильнее эффект условий эксперимента, тем больше разность между математическими ожиданиями групп. Другой причиной изменчивости данных является естественная изменчивость любого процесса, в данном случае - производства парашютов. Даже если бы все волокна приобретались у одного и того же поставщика, их прочность была бы неодинаковой при прочих равных условиях. Поскольку этот эффект проявляется в каждой из групп, он называется внутригрупповой вариацией.

Разности между выборочными средними называются межгрупповой вариацией SSA. Часть внутригрупповой вариации, как уже указывалось, объясняется принадлежностью данных разным группам. Однако даже если бы группы были совершенно одинаковыми (т.е. нулевая гипотеза была бы истинной), межгрупповая вариация все равно существовала. Причина этого заключается в естественной изменчивости процесса производства парашютов. Поскольку выборки разные, их выборочные средние отличаются друг от друга. Следовательно, если нулевая гипотеза является истинной, как межгрупповая, так и внутригрупповая изменчивость представляют собой оценку изменчивости генеральной совокупности. Если нулевая гипотеза является ложной, межгрупповая гипотеза будет больше. Именно этот факт лежит в основе F -критерия для сравнения разностей между математическими ожиданиями нескольких групп.

После выполнения однофакторного дисперсионного анализа и обнаружения значительной разницы между фирмами остается неизвестным, какой же из поставщиков существенно отличается от остальных. Нам известно лишь, что математические ожидания генеральных совокупностей не равны. Иначе говоря, по крайней мере одно из математических ожиданий существенно отличается от других. Чтобы определить, какой из поставщиков отличается от других, можно воспользоваться процедурой Тьюки , использующей попарное сравнение между поставщиками. Эта процедура была разработана Джоном Тьюки. Впоследствии он и К. Крамер независимо друг от друга модифицировали эту процедуру для ситуаций, в которых объемы выборок отличаются друг от друга.

Множественное сравнение: процедура Тьюки-Крамера

В нашем сценарии для сравнения прочности парашютов использовался однофакторный дисперсионный анализ. Обнаружив значительные различия между математическими ожиданиями четырех групп, необходимо определить, какие именно группы отличаются друг от друга. Хотя существует несколько способов решить эту задачу, мы опишем лишь процедуру множественного сравнения Тьюки-Крамера. Этот метод является примером процедур апостериорного сравнения (post hoc comparison), поскольку проверяемая гипотеза формулируется после анализа данных. Процедура Тьюки-Крамера позволяет одновременно сравнить все пары групп. На первом этапе вычисляются разности X j – X j , где j ≠ j , между математическими ожиданиями с(с – 1)/2 групп. Критический размах процедуры Тьюки-Крамера вычисляется по формуле:

где Q U - верхнее критическое значение распределения стьюдентизированного размаха, имеющего с степеней свободы в числителе и n – с степеней свободы в знаменателе.

Если объемы выборок не одинаковы, критический размах вычисляется для каждой пары математических ожиданий отдельно. На последнем этапе каждая из с(с – 1)/2 пар математических ожиданий сравнивается с соответствующим критическим размахом. Элементы пары считаются значимо различными, если модуль разности |X j – X j | между ними превышает критический размах.

Применим процедуру Тьюки-Крамера к задаче о прочности парашютов. Поскольку компания, производящая парашюты, имеет четыре поставщика, следует проверить 4(4 – 1)/2 = 6 пар поставщиков (рис. 9).

Рис. 9. Попарные сравнения выборочных средних

Поскольку все группы имеют одинаковый объем (т.е. все n j = n j ), достаточно вычислить только один критический размах. Для этого по таблице Дисперсионного анализа (рис. 6) определим величину MSW = 6,094. Затем найдем величину Q U при α = 0,05, с = 4 (число степеней свободы в числителе) и n – с = 20 – 4 = 16 (число степеней свободы в знаменателе). К сожалению, я не нашел соответствующей функции в Excel, так что воспользовался таблицей (рис. 10).

Рис. 10. Критическое значение стьюдентизированного размаха Q U

Получаем:

Поскольку лишь 4,74 > 4,47 (см. нижнюю таблицу рис. 9), статистически значимая разница существует между первым и вторым поставщиком. Все остальные пары имеют выборочные средние, которые не позволяют говорить о их различии. Следовательно, средняя прочность парашютов, сотканных из волокон, приобретенных у первого поставщика, значимо меньше, чем у второго.

Необходимые условия однофакторного дисперсионного анализа

При решении задачи о прочности парашютов мы не проверяли, выполняются ли условия, при которых можно использовать однофакторный F -критерий. Как же узнать, можно ли применять однофакторный F -критерий при анализе конкретных экспериментальных данных? Однофакторный F -критерий можно применять, только если выполняются три основных предположения: экспериментальные данные должны быть случайными и независимыми, иметь нормальное распределение, а их дисперсии должны быть одинаковыми.

Первое предположение - случайность и независимость данных - должно выполняться всегда, поскольку корректность любого эксперимента зависит от случайности выбора и/или процесса рандомизации. Чтобы избежать искажения результатов, необходимо, чтобы данные извлекались из с генеральных совокупностей случайно и независимо друг от друга. Аналогично данные должны быть случайным образом распределенными по с уровням интересующего нас фактора (экспериментальным группам). Нарушение этих условий может серьезно исказить результаты дисперсионного анализа.

Второе предположение - нормальность - означает, что данные извлечены из нормально распределенных генеральных совокупностей. Как и для t -критерия, однофакторный дисперсионный анализ на основе F -критерия относительно мало чувствителен к нарушению этого условия. Если распределение не слишком значительно отличается от нормального, уровень значимости F -критерия изменяется мало, особенно если объем выборок достаточно велик. Если же условие о нормальности распределения нарушается серьезно, следует применять .

Третье предположение - однородность дисперсии - означает, что дисперсии каждой генеральной совокупности равны между собой (т.е. σ 1 2 = σ 2 2 = … = σ j 2). Это предположение позволяет решить, разделять или объединять внутригрупповые дисперсии. Если объемы групп совпадают, условие однородности дисперсии слабо влияет на выводы, полученные с помощью F -критерия. Однако, если объемы выборок неодинаковы, нарушение условия о равенстве дисперсий может серьезно исказить результаты дисперсионного анализа. Таким образом, следует стремиться к тому, чтобы объемы выборок были одинаковыми. Одним из методов проверки предположения об однородности дисперсии является критерий Левенэ , описанный ниже.

Если из всех трех условий нарушается лишь условие об однородности дисперсии, можно применять процедуру, аналогичную t -критерию, использующему раздельную дисперсию (подробнее см. ). Однако, если предположения о нормальном распределении и однородности дисперсии нарушаются одновременно, необходимо выполнить нормализацию данных и уменьшить разности между дисперсиями или применить непараметрическую процедуру.

Критерий Левенэ для проверки однородности дисперсии

Несмотря на то что F -критерий относительно устойчив к нарушениям условия о равенстве дисперсий в группах, грубое нарушение этого предположения существенно влияет на уровень значимости и мощность критерия. Возможно, одним из наиболее мощных является критерий Левенэ . Для проверки равенства дисперсий с генеральных совокупностей проверим следующие гипотезы:

Н 0: σ 1 2 = σ 2 2 = … = σ j 2

Н 1 : не все σ j 2 одинаковы (j = 1, 2, …, с )

Модифицированный критерий Левенэ основан на утверждении, что если изменчивость в группах одинакова, для проверки нулевой гипотезы о равенстве дисперсий можно применить анализ дисперсии абсолютных величин разностей между наблюдениями и медианами групп. Итак, сначала следует вычислить абсолютные величины разностей между наблюдениями и медианами в каждой группе, а затем выполнить однофакторный дисперсионный анализ полученных абсолютных величин разностей. Для иллюстрации критерия Левенэ вернемся к сценарию, изложенному в начале заметки. Используя данные, представленные на рис. 6, проведем аналогичный анализ, но в отношении модулей разниц исходных данных и медиан по каждой выборке отдельно (рис. 11).

Дисперсионный анализ

Курсовая работа по дисциплине: «Системный анализ»

Исполнитель студент гр. 99 ИСЭ-2 Жбанов В.В.

Оренбургский государственный университет

Факультет информационных технологий

Кафедра прикладной информатики

г. Оренбург-2003

Введение

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации /1/.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ 2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.

Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы /2/.

1 Дисперсионный анализ

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

Перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

Иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ 2 . Она является мерой вариации частных средних по группам

вокруг общей средней и определяется по формуле: ,

где k - число групп;

n j - число единиц в j-ой группе;

- частная средняя по j-ой группе; - общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия σ j 2 .

.

Между общей дисперсией σ 0 2 , внутригрупповой дисперсией σ 2 и межгрупповой дисперсией

1.2 Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

x ij = μ + F j + ε ij , (1)

где х ij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

F i – эффект, обусловленный влиянием i-го уровня фактора;

ε ij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

Математическое ожидание возмущения ε ij равно нулю для любых i, т.е.

M(ε ij) = 0; (2)

Возмущения ε ij взаимно независимы;

Дисперсия переменной x ij (или возмущения ε ij) постоянна для

любых i, j, т.е.

D(ε ij) = σ 2 ; (3)

Переменная x ij (или возмущение ε ij) имеет нормальный закон

распределения N(0;σ 2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Как было уже отмечено, дисперсионный метод тесно связан со статистическими группировками и предполагает, что изучаемая совокупность подразделена на группы по факторным признакам, влияние которых должно быть изучено.

На основе дисперсионного анализа производится:

1. оценка достоверности различий в групповых средних по одному факторному признаку или нескольким;

2. оценка достоверности взаимодействий факторов;

3. оценка частных различий между парами средних.

В основе применения дисперсионного анализа лежит закон разложения дисперсий (вариаций) признака на составляющие.

Общая вариация D о результативного признака при группировке может быть разложена на следующие составные части:

1. на межгрупповую D м связанную с группировочным признаком;

2. на остаточную (внутригрупповую) D B , не связанную с группировочным признаком.

Соотношение между этими показателями выражается следующим образом:

D о = D м + D в. (1.30)

Рассмотрим применение дисперсионного анализа на примере.

Допустим, требуется доказать, влияют ли сроки посева на урожайность пшеницы. Исходные опытные данные для дисперсионного анализа представлены в табл. 8.

Таблица 8

В данном примере N = 32, K = 4, l = 8.

Определим общую суммарную вариацию урожайности, которая представляет собой сумму квадратов отклонений индивидуальных значений признака от общей средней:

где N – число единиц совокупности; Y i – индивидуальные значения урожайности; Y o – общая средняя урожайности по всей совокупности.

Для определения межгрупповой суммарной вариации, определяющей вариацию результативного признака за счет изучаемого фактора, необходимо знать средние значения результативного признака по каждой группе. Эта суммарная вариация равна сумме квадратов отклонений групповых средних величин от общей средней величины признака, взвешенной на число единиц совокупности в каждой из групп:

Внутригрупповая суммарная вариация равна сумме квадратов отклонений индивидуальных значений признака от групповых средних по каждой группе, суммированной по всем группам совокупности.

Влияние фактора на результативный признак проявляется в соотношении между D м и D в: чем сильнее влияние фактора на величину изучаемого признака, тем больше D м и меньше D в.

Для проведения дисперсионного анализа нужно установить источники варьирования признака, объем вариации по источникам, определить число степеней свободы для каждой компоненты вариации.

Объем вариации уже установлен, теперь необходимо определить число степеней свободы вариации. Число степеней свободы – это число независимых отклонений индивидуальных значений признака от его среднего значения. Общее число степеней свободы, соответствующее общей сумме квадратов отклонений в дисперсионном анализе, разлагается по составляющим вариации. Так, общей сумме квадратов отклонений D о соответствует число степеней свободы вариации, равное N – 1 = 31. Групповой вариации D м соответствует число степеней свободы вариации, равное K – 1 = 3. Внутригрупповой остаточной вариации соответствует число степеней свободы вариации, равное N – K = 28.


Теперь, зная суммы квадратов отклонений и число степеней свободы, можно определить дисперсии для каждой составляющей. Обозначим эти дисперсии: d м – групповые и d в – внутригрупповые.

После вычисления этих дисперсий приступим к установлению значимости влияния фактора на результативный признак. Для этого находим отношение: d M /d B = F ф,

Величина F ф, называемая критерием Фишера , сравнивается с табличным, F табл. Как уже было отмечено, если F ф > F табл, то влияние фактора на результативный признак доказано. Если F ф < F табл то можно утверждать, что различие между дисперсиями находится в пределах возможных случайных колебаний и, следовательно, не доказывает с достаточной вероятностью влияние изучаемого фактора.

Теоретическая величина связана с вероятностью, и в таблице ее значение приводится при определенном уровне вероятности суждения. В приложении имеется таблица, позволяющая установить возможную величину F при вероятности суждения, наиболее часто используемой: уровень вероятности «нулевой гипотезы» – 0,05. Вместо вероятностей «нулевой гипотезы» таблица может быть названа таблицей для вероятности 0,95 существенности влияния фактора. Повышение уровня вероятности требует для сравнения более высокого значения F табл.

Величина F табл зависит также от числа степеней свободы двух сравниваемых дисперсий. Если число степеней свободы стремится к бесконечности, то F табл стремится к единице.

Таблица значений F табл построена следующим образом: в столбцах таблицы указаны степени свободы вариации для большей дисперсии, а в строках – степени свободы для меньшей (внутригрупповой) дисперсии. Величина F находится на пересечении столбца и строки соответствующих степеней свободы вариации.

Так, в нашем примере F ф = 21,3/3,8 = 5,6. Табличное же значение F табл для вероятности 0,95 и степеней свободы, соответственно равных 3 и 28, F табл = 2,95.

Значение F ф полученное в опыте, превышает теоретическое значение даже для вероятности 0,99. Следовательно, опыт с вероятностью более 0,99 доказывает влияние изучаемого фактора на урожайность, т. е. опыт можно считать надежным, доказанным, а значит, сроки посева оказывают существенное влияние на урожайность пшеницы. Оптимальным сроком посева следует считать период с 10 по 15 мая, так как именно при этом сроке посева получены наилучшие результаты урожайности.

Нами рассмотрена методика дисперсионного анализа при группировке по одному признаку и случайному распределению повторностей внутри группы. Однако часто бывает так, что опытный участок имеет какие-то различия в плодородии почвы и т. д. Поэтому может возникнуть такая ситуация, что большее число делянок одного из вариантов попадет на лучшую часть, и его показатели будут завышены, а другого варианта – на худшую часть, и результаты в этом случае, естественно, будут хуже, т. е. занижены.

Чтобы исключить варьирование, которое вызывается не относящимися к опыту причинами, надо из внутригрупповой (остаточной) дисперсии вычленить дисперсию, рассчитанную по повторностям (блокам).

Общая сумма квадратов отклонений подразделяется в этом случае уже на 3 составляющие:

D о = D м + D повт + D ост. (1.33)

Для нашего примера сумма квадратов отклонений, вызванная повторностями, будет равна:

Стало быть, собственно случайная сумма квадратов отклонений будет равна:

D ост = D в – D повт; D ост = 106 – 44 = 62.

Для остаточной дисперсии число степеней свободы будет равно 28 – 7 = 21. Результаты дисперсионного анализа представлены в табл. 9.

Таблица 9

Поскольку фактические значения F-критерия для вероятности 0,95 превышают табличные, то влияние сроков посева и повторностей на урожайность пшеницы следует считать существенным. Рассмотренный способ построения опыта, когда участок предварительно делится на блоки с относительно выровненными условиями, а проверяемые варианты распределяются внутри блока в случайном порядке, называется способом рендомизированных блоков.

С помощью анализа дисперсионным методом можно изучить влияние не только одного фактора на результат, а двух и более. Дисперсионный анализ в этом случае будет называться многофакторным дисперсионным анализом .

Двухфакторный дисперсионный анализ отличается от двух однофакторных тем, что он может ответить на следующие вопросы:

1. 1каково влияние обоих факторов вместе?

2. какова роль сочетания этих факторов?

Рассмотрим дисперсионный анализ опыта, в котором следует выявить влияние не только сроков посева, но и сортов на урожайность пшеницы (табл. 10).

Таблица 10. Данные опыта по влиянию сроков посева и сортов на урожайность пшеницы

– это сумма квадратов отклонений индивидуальных значений от общей средней.

Вариация по совместному влиянию сроков посева и сорта

– это сумма квадратов отклонений средних по подгруппам от общей средней, взвешенных на число повторностей, т. е. на 4.

Вычисление вариации по влиянию только сроков посева:

Остаточная вариация определяется как разность между общей вариацией и вариацией по совместному влиянию изучаемых факторов:

D ост = D о – D пс = 170 – 96 = 74.

Все расчеты можно оформить в виде таблицы (табл. 11).

Таблица 11. Результаты дисперсионного анализа

Результаты дисперсионного анализа показывают, что влияние изучаемых факторов, т. е. сроков посева и сорта, на урожайность пшеницы существенно, так как F-критерии фактические по каждому из факторов значительно превышают табличные, найденные для соответствующих степеней свободы, и при этом с достаточно высокой вероятностью (р = 0,99). Влияние же сочетания факторов в данном случае отсутствует, так как факторы независимы друг от друга.

Анализ влияния трех факторов на результат ведется по такому же принципу, что и для двух факторов, только в этом случае будет три дисперсии по факторам и четыре дисперсии по сочетанию факторов. С увеличением числа факторов резко увеличивается объем расчетных работ и, кроме того, становится затруднительно оформлять исходную информацию в комбинационную таблицу. Поэтому вряд ли целесообразно изучать влияние многих факторов на результат с использованием дисперсионного анализа; лучше взять меньшее их число, но выбрать наиболее существенные факторы с точки зрения экономического анализа.

Нередко исследователю приходится иметь дело с так называемыми непропорциональными дисперсионными комплексами, т. е. такими, в которых не соблюдается пропорциональность численностей вариантов.

В таких комплексах вариация суммарного действия факторов не равна сумме вариации по факторам и вариации сочетания факторов. Она отличается на величину, зависящую от степени связей между отдельными факторами, возникающих вследствие нарушения пропорциональности.

В этом случае возникают трудности при определении степени влияния каждого фактора, так как сумма частных влияний не равна суммарному влиянию.

Одним из способов приведения непропорционального комплекса к единой структуре является способ его замены пропорциональным комплексом, в котором частоты усреднены по группам. Когда такая замена произведена, задача решается по принципам пропорциональных комплексов.