Химические названия и формулы веществ. H2O2 - что это за вещество? Меры безопасности в обращении с Н2О2

Химические формула – это изображение с помощью символов .

Знаки химических элементов

Химический знак или химический символ элемента – это первая или две первые буквы от латинского названия этого элемента.

Например: Ferrum – Fe , Cuprum – Cu , Oxygenium – O и т.д.

Таблица 1: Информация, которую дает химический знак

Сведения На примере Cl
Название элемента Хлор
Неметалл, галоген
Один элемента 1 атом хлора
(Ar) данного элемента Ar (Cl) = 35,5
Абсолютная атомная масса химического элемента

m = Ar · 1,66·10 -24 г = Ar · 1,66 · 10 -27 кг

M (Cl) = 35,5 · 1,66 · 10 -24 = 58,9 · 10 -24 г

Название химического знака в большинстве случаев читается как название химического элемента. Например, К – калий , Са – кальций , Mg – магний , Mn – марганец .

Случаи, когда название химического знака читается иначе, приведены в таблице 2:

Название химического элемента Химический знак Название химического знака

(произношение)

Азот N Эн
Водород H Аш
Железо Fe Феррум
Золото Au Аурум
Кислород O О
Кремний Si Силициум
Медь Cu Купрум
Олово Sn Станум
Ртуть Hg Гидраргиум
Свинец Pb Плюмбум
Сера S Эс
Серебро Ag Аргентум
Углерод C Цэ
Фосфор P Пэ

Химические формулы простых веществ

Химическими формулами большинства простых веществ (всех металлов и многих неметаллов) являются знаки соответствующих химических элементов.

Так вещество железо и химический элемент железо обозначаются одинаково – Fe .

Если имеет молекулярную структуру (существует в виде , то его формулой является химический знак элемента с индексом внизу справа, указывающим число атомов в молекуле: H 2 , O 2 , O 3 , N 2 , F 2 , Cl 2 , Br 2 , P 4 , S 8 .

Таблица 3: Информация, которую дает химический знак

Сведения На примере C
Название вещества Углерод (алмаз, графит, графен, карбин)
Принадлежность элемента к данному классу химических элементов Неметалл
Один атом элемента 1 атом углерода
Относительная атомная масса (Ar) элемента, образующего вещество Ar (C) = 12
Абсолютная атомная масса M (C) = 12 · 1,66 · 10-24 = 19,93 · 10 -24 г
Один вещества 1 моль углерода, т.е. 6,02 · 10 23 атомов углерода
M (C) = Ar (C) = 12 г/моль

Химические формулы сложных веществ

Формулу сложного вещества составляют путем записи знаков химических элементов, из которых это вещество состоит, с указанием числа атомов каждого элемента в молекуле. При этом, как правило, химические элементы записывают в порядке увеличения их электроотрицательности в соответствии со следующим практическим рядом:

Me , Si , B , Te , H , P , As , I , Se , C , S , Br , Cl , N , O , F

Например, H 2 O , CaSO 4 , Al 2 O 3 , CS 2 , OF 2 , NaH .

Исключение составляют:

  • некоторые соединения азота с водородом (например, аммиак NH 3 , гидразин N 2 H 4 );
  • соли органических кислот (например, формиат натрия HCOONa , ацетат кальция (CH 3 COO) 2 Ca) ;
  • углеводороды (CH 4 , C 2 H 4 , C 2 H 2 ).

Химические формулы веществ, существующих в виде димеров (NO 2 , P 2 O 3 , P2 O5 , соли одновалентной ртути, например: HgCl , HgNO 3 и др.), записывают в виде N 2 O 4 , P 4 O 6 , P 4 O 10 , Hg 2 Cl 2 , Hg 2 ( NO 3) 2 .

Число атомов химического элемента в молекуле и сложном ионе определяется на основании понятия валентности или степени окисления и записывается индексом внизу справа от знака каждого элемента (индекс 1 опускается). При этом исходят из правила:

алгебраическая сумма степеней окисления всех атомов в молекуле должна быть равной нулю (молекулы электронейтральны), а в сложном ионе – заряду иона.

Например:

2Al 3 + +3SO 4 2- =Al 2 (SO 4) 3

Этим же правилом пользуются при определении степени окисления химического элемента по формуле вещества или сложного . Обычно это элемент, имеющий несколько степеней окисления. Степени окисления остальных элементов, образующих молекулу или ион должны быть известны.

Заряд сложного иона – это алгебраическая сумма степеней окисления всех атомов, образующих ион. Поэтому при определении степени окисления химического элемента в сложном ионе сам ион заключается в скобки, а его заряд выносится за скобки.

При составлении формул по валентности вещество представляют, как соединение, состоящее из двух частиц различного типа, валентности которых известны. Далее пользуются правилом:

в молекуле произведение валентности на число частиц одного типа должно быть равным произведению валентности на число частиц другого типа.

Например:

Цифра, стоящая перед формулой в уравнении реакции, называется коэффициентом . Она указывает либо число молекул , либо число молей вещества .

Коэффициент, стоящий перед химическим знаком , указывает число атомов данного химического элемента , а в случае, когда знак является формулой простого вещества, коэффициент указывает либо число атомов , либо число молей этого вещества.

Например:

  • 3 Fe – три атома железа, 3 моль атомов железа,
  • 2 H – два атома водорода, 2 моль атомов водорода,
  • H 2 – одна молекула водорода, 1 моль водорода.

Химические формулы многих веществ были определены опытным путем, поэтому их называют «эмпирическими» .

Таблица 4: Информация, которую дает химическая формула сложного вещества

Сведения На примере C aCO3
Название вещества Карбонат кальция
Принадлежность элемента к определенному классу веществ Средняя (нормальная) соль
Одна молекула вещества 1 молекула карбоната кальция
Один моль вещества 6,02 · 10 23 молекул CaCO 3
Относительная молекулярная масса вещества (Мr) Мr (CaCO3) = Ar (Ca) +Ar (C) +3Ar (O) =100
Молярная масса вещества (M) М (CaCO3) = 100 г/моль
Абсолютная молекулярная масса вещества (m) M (CaCO3) = Mr (CaCO3) · 1,66 · 10 -24 г = 1,66 · 10 -22 г
Качественный состав (какие химические элементы образуют вещество) кальций, углерод, кислород
Количественный состав вещества:
Число атомов каждого элемента в одной молекуле вещества: молекула карбоната кальция состоит из 1 атома кальция, 1 атома углерода и 3 атомов кислорода.
Число молей каждого элемента в 1 моле вещества: В 1 моль СаСО 3 (6,02 ·10 23 молекулах) содержится 1 моль (6,02 ·10 23 атомов) кальция, 1 моль (6,02 ·10 23 атомов) углерода и 3 моль (3·6,02·10 23 атомов) химического элемента кислорода)
Массовый состав вещества:
Масса каждого элемента в 1 моле вещества: 1 моль карбоната кальция (100г) содержит химических элементов: 40г кальция , 12г углерода , 48г кислорода .
Массовые доли химических элементов в веществе (состав вещества в процентах по массе):

Состав карбоната кальция по массе:

W (Ca) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (1·40)/100= 0,4 (40%)

W (C) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (1·12)/100= 0,12 (12%)

W (О ) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (3·16)/100= 0,48 (48%)

Для вещества с ионной структурой (соли, кислоты, основания) – формула вещества дает информацию о числе ионов каждого вида в молекуле, их количестве и массе ионов в 1 моль вещества:

Молекула СаСО 3 состоит из иона Са 2+ и иона СО 3 2-

1 моль (6,02·10 23 молекул) СаСО 3 содержит 1 моль ионов Са 2+ и 1 моль ионов СО 3 2- ;

1 моль (100г) карбоната кальция содержит 40г ионов Са 2+ и 60г ионов СО 3 2-

Молярный объем вещества при нормальных условиях (только для газов)

Графические формулы

Для получения более полной информации о веществе пользуются графическими формулами , которые указывают порядок соединения атомов в молекуле и валентность каждого элемента .

Графические формулы веществ, состоящих из молекул, иногда, в той или иной степени, отражают и строение (структуру) этих молекул, в этих случаях их можно назвать структурными .

Для составления графической (структурной) формулы вещества необходимо:

  • Определить валентность всех химических элементов, образующих вещество.
  • Записать знаки всех химических элементов, образующих вещество, каждый в количестве, равном числу атомов данного элемента в молекуле.
  • Соединить знаки химических элементов черточками. Каждая черточка обозначает пару, осуществляющую связь между химическими элементами и поэтому одинаково принадлежит обоим элементам.
  • Число черточек, окружающих знак химического элемента, должно соответствовать валентности этого химического элемента.
  • При составлении формул кислородсодержащих кислот и их солей атомы водорода и атомы металлов связываются с кислотообразующим элементом через атом кислорода.
  • Атомы кислорода соединяют друг с другом только при составлении формул пероксидов.

Примеры графических формул:

Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения идёт дискуссия на тему: Сомнения относительно терминологии. Химическая формула … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Химическая формула отражение информации о составе и структуре веществ с помощью химических знаков, чисел и разделяющих знаков скобок. В настоящее время различают следующие виды химических формул: Простейшая формула. Может быть получена опытным… … Википедия

Основная статья: Неорганические соединения Список неорганических соединений по элементам информационный список неорганических соединений, представленный в алфавитном порядке (по формуле) для каждого вещества, водородные кислоты элементов (при их… … Википедия

Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Химическим уравнением (уравнением химической реакции) называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов. Уравнение химической реакции даёт качественную и количественную… … Википедия

Химическое программное обеспечение компьютерные программы, используемые в области химии. Содержание 1 Химические редакторы 2 Платформы 3 Литература … Википедия

Книги

  • Краткий словарь биохимических терминов , Кунижев С.М. , Словарь предназначен для студентов химических и биологических специальностей университетов, изучающих курс общей биохимии, экологии и основ биотехнологии, а также может быть использован в… Категория: Биология Издатель: ВУЗОВСКАЯ КНИГА , Производитель:

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом - выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода - реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 0 = CO 2 + 4Н 2 - 165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который применяется иногда и в промышленности,- разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H 2 O + C ⇄ H 2 + CO

3.Из природного газа.

Конверсияс водяным паром: CH 4 + H 2 O ⇄ CO + 3H 2 (1000 °C) Каталитическое окисление кислородом: 2CH 4 + O 2 ⇄ 2CO + 4H 2

4. Крекинг и реформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2 Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e - → H 2 + 2H 2 O

  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в двух формах (модификациях) - в виде орто - и пара-водорода.

В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна - Н₂. При обычных условиях - это газ без цвета, запаха и вкуса. Водород - самый лёгкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия: Н 2 =2Н - 432 кДж Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция: Ca + Н 2 = СаН 2 и с единственным неметаллом - фтором, образуя фтороводород: F 2 +H 2 =2HF С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении. Он может «отнимать» кислород от некоторых оксидов, наприме: CuO + Н 2 = Cu + Н 2 0 Записанное уравнение отражает реакцию восстановления. Реакциями восстановления называются процессы, в результате которых от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются). Далее будет дано и другое определение понятиям «окисление» и «восстановление». А данное определение, исторически первое, сохраняет значение и в настоящее время, особенно в органической химии. Реакция восстановления противоположна реакции окисления. Обе эти реакции всегда протекают одновременно как один процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N 2 + 3H 2 → 2 NH 3

С галогенами образует галогеноводороды :

F 2 + H 2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl 2 + H 2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

Водород образует с активными металлами гидриды :

Na + H 2 → 2 NaH Ca + H 2 → CaH 2 Mg + H 2 → MgH 2

Гидриды - солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O Fe 2 O 3 + 3H 2 → 2 Fe + 3H 2 O WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

При действии водорода на ненасыщенные углеводороды в присутствии никелевого катализатора и повышенной температуре происходит реакция гидрирования :

CH 2 =CH 2 + H 2 → CH 3 -CH 3

Водород восстанавливает альдегиды до спиртов:

CH 3 CHO + H 2 → C 2 H 5 OH.

Геохимия водорода

Водород - основной строительный материал вселенной. Это самый распространённый элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение

  • Водородная энергетика

Атомарный водород используется для атомно-водородной сварки.

В пищевой промышленности водород зарегистрирован в качестве пищевой добавки E949 , как упаковочный газ.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь - так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21%. Также водород пожароопасен. Жидкий водород при попадении на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4% до 96 % объёмных. При смеси с воздухом от 4% до 75(74) % объёмных.

Использование водорода

В химической промышленности водород используют при производстве аммиака, мыла и пластмасс. В пищевой промышленности с помощью водорода из жидких растительных масел делают маргарин. Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько ужасных катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют газом гелием. Водород используют также в качестве ракетного топлива. Когда-нибудь водород, возможно, будут широко применять как топливо для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар (правда, само получение водорода приводит к некоторому загрязнению окружающей среды). Наше Солнце в основном состоит из водорода. Солнечное тепло и свет - это результат выделения ядерной энергии при слиянии ядер водорода.

Использование водорода в качестве топлива (экономическая эффективность)

Важнейшей характеристикой веществ, используемых в качестве топлива, является их теплота сгорания. Из курса общей химии известно, что реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H 2 (2 г) и 0,5 моль O 2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н 2 + 0,5 О 2 = Н 2 О

после завершения реакции образуется 1 моль H 2 O (18 г) с выделением энергии 285,8 кДж/моль (для сравнения: теплота сгорания ацетилена составляет 1300 кДж/моль, пропана - 2200 кДж/моль). 1 м³ водорода весит 89,8 г (44,9 моль). Поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии. С учётом того, что 1 кВт·ч = 3600 кДж, получим 3,56 кВт·ч электроэнергии. Зная тариф на 1 кВт·ч электричества и стоимость 1 м³ газа, можно делать вывод о целесообразности перехода на водородное топливо.

Например, экспериментальная модель Honda FCX 3 поколения с баком водорода 156 л (содержит 3,12 кг водорода под давлением 25 МПа) проезжает 355 км. Соответственно из 3,12 кг H2 получается 123,8 кВт·ч. На 100 км расход энергии составит 36,97 кВт·ч. Зная стоимость электроэнергии, стоимость газа или бензина, их расход для автомобиля на 100 км легко подсчитать отрицательный экономический эффект перехода автомобилей на водородное топливо. Скажем (Россия 2008), 10 центов за кВт·ч электроэнергии приводят к тому, что 1 м³ водорода приводят к цене 35,6 цента, а с учётом КПД разложения воды 40-45 центов, такое же количество кВт·ч от сжигания бензина стоит 12832,4кДж/42000кДж/0,7кг/л*80центов/л=34 цента по розничным ценам, тогда как для водорода мы высчитывали идеальный вариант, без учёта транспортировки, амортизации оборудования и т. д. Для метана с энергией сгорания около 39 МДж на м³ результат будет ниже в два-четыре раза из-за разницы в цене (1м³ для Украины стоит 179$, а для Европы 350$). То есть эквивалентное количество метана будет стоить 10-20 центов.

Однако не следует забывать того, что при сжигании водорода мы получаем чистую воду, из которой его и добыли. То есть имеем возобновляемый запасатель энергии без вреда для окружающей среды, в отличие от газа или бензина, которые являются первичными источниками энергии.

Php on line 377 Warning: require(http://www..php): failed to open stream: no suitable wrapper could be found in /hsphere/local/home/winexins/сайт/tab/vodorod.php on line 377 Fatal error: require(): Failed opening required "http://www..php" (include_path="..php on line 377


Формулы для ковалентных связей в корне отличаются от формул для ионных связей. Дело в том, что ковалентные соединения могут образовываться самыми разными способами, поэтому в результате реакции возможно появление различных соединений.

1. Эмпирическая формула

В эмпирической формуле указываются элементы, из которых состоит молекула, с наименьшим целочисленными соотношениями.

Например, C 2 H 6 O - соединение содержит два атома углерода, шесть атомов водорода и один атом кислорода.

2. Молекулярная формула

Молекулярная формула указывает из каких атомов состоит соединение и в каких количествах эти атомы в нем находятся.

Например, для соединения C 2 H 6 O молекулярными формулами могут быть: C 4 H 12 O 2 ; C 6 H 18 O 3 ...

Для полного описания ковалентного соединения молекулярной формулы недостаточно:

Как видим, оба соединения имеют одинаковую молекулярную формулу - C 2 H 6 O, но являются совершенно разными веществами:

  • диметиловый эфир применяется в холодильных установках;
  • этиловый спирт - основа алкогольных напитков.

3. Структурная формула

Структурная формула служит для точного определения ковалентного соединения, т.к., кроме элементов в соединении и количества атомов, показывает еще и схему связей соединения.

В качестве структурной формулы используют электронно-точечную формулу и формулу Льюиса .

4. Структурная формула для воды (H 2 O)

Рассмотрим порядок построение структурной формулы на примере молекулы воды.

I Строим каркас соединения

Атомы соединения располагаются вокруг центрального атома. В качестве центральных обычно выступают атомы: углерода, кремния, азота, фосфора, кислорода, серы.

II Находим сумму валентных электронов всех атомов соединения

Для воды: H 2 O = (2·1 + 6) = 8

В атоме водорода один валентный электрон, в атоме кислорода - 6. Поскольку в соединении присутствует два атома водорода, то общее число валентных электронов молекулы воды будет равно 8.

III Определяем количество ковалентных связей в молекуле воды

Определяем по формуле: S = N - A , где

S - количество электронов, совместно используемых в молекуле;

N - сумма валентных электронов, соответствующих завершенному внешнему энергетическому уровню атомов в соединении:

N = 2 - для атома водорода;

N = 8 - для атомов остальных элементов

A - сумма валентных электронов всех атомов в соединении.

N = 2·2 + 8 = 12

A = 2·1 +6 = 8

S = 12 - 8 = 4

В молекуле воды совместно используемых электронов - 4. Поскольку ковалентная связь состоит из пары электронов, то получаем две ковалентные связи.

IV Распределяем совместные электроны

Между центральным атомом и атомами, которые окружают его, должна быть хотя бы одна связь. Для молекулы воды таких связей будет по два для каждого атома водорода:

V Распределяем оставшиеся электроны

Из восьми валентных электронов четыре уже распределены. Куда "девать" оставшиеся четыре электрона?

Каждый атом в соединении должен иметь полный октет электронов. Для водорода - это два электрона; для кислорода - 8.

Совместно используемые электроны называются связывающими .

Электронно-точечная формула и формула Льюиса наглядно описывают строение ковалентной связи, но громоздки и занимают много места. Этих недостатков можно избежать применяя сжатую структурную формулу , в которой указывается только порядок "следования" связей.

Пример сжатой структурной формулы:

  • диметиловый эфир - CH 3 OCH 3
  • этиловый спирт - C 2 H 5 OH

2.1. Химический язык и его части

Человечество использует много разных языков. Кроме естественных языков (японского, английского, русского – всего более 2,5 тысяч), существуют еще и искусственные языки , например, эсперанто. Среди искусственных языков выделяются языки различных наук . Так, в химии используется свой, химический язык .
Химический язык – система условных обозначений и понятий, предназначенная для краткой, ёмкой и наглядной записи и передачи химической информации.
Сообщение, написанное на большинстве естественных языков, делится на предложения, предложения – на слова, а слова – на буквы. Если предложения, слова и буквы мы назовем частями языка, то тогда мы сможем выделить аналогичные части и в химическом языке (таблица 2).

Таблица 2. Части химического языка

Любым языком овладеть сразу невозможно, это относится и к химическому языку. Поэтому пока вы познакомитесь только с основами этого языка: выучите некоторые " буквы" , научитесь понимать смысл " слов" и" предложений" . В конце этой главы вы познакомитесь с названиями химических веществ – неотъемлемой частью химического языка. По мере изучения химии ваше знание химического языка будет расширяться и углубляться.

ХИМИЧЕСКИЙ ЯЗЫК.
1.Какие искусственные языки вы знаете (кроме названных в тексте учебника)?
2.Чем естественные языки отличаются от искусственных?
3.Как вы думаете, можно ли при описании химических явлений обходиться без использования химического языка? Если нет, то почему? Если да, то в чем будут заключаться преимущества, а в чем недостатки такого описания?

2.2. Символы химических элементов

Символ химического элемента обозначает сам элемент или один атом этого элемента.
Каждый такой символ представляет собой сокращенное латинское название химического элемента, состоящее из одной или двух букв латинского алфавита (латинский алфавит см. в приложении 1). Символ пишется с прописной буквы. Символы, а также русские и латинские названия некоторых элементов, приведены в таблице 3. Там же даны сведения о происхождении латинских названий. Общего правила произношения символов не существует, поэтому в таблице 3 приводится и " чтение" символа, то есть, как этот символ читается в химической формуле.

Заменять символом название элемента в устной речи нельзя, а в рукописных или печатных текстах это допускается, но не рекомендуется.В настоящее время известно 110 химических элементов, у 109 из них есть названия и символы, утвержденные Международным союзом теоретической и прикладной химии (ИЮПАК).
В таблице 3 приведена информация только о 33 элементах. Это те элементы, которые при изучении химии вам встретятся в первую очередь. Русские названия (в алфавитном порядке) и символы всех элементов приведены в приложении 2.

Таблица 3. Названия и символы некоторых химических элементов

Название

Латинское

Написание

-

Написание

Происхождение

- -
Азот N itrogenium От греч. " рождающий селитру" " эн"
Алюминий Al uminium От лат. " квасцы" " алюминий"
Аргон Ar gon От греч. " недеятельный" " аргон"
Барий Ba rium От греч. " тяжелый" " барий"
Бор B orum От арабск. " белый минерал" " бор"
Бром Br omum От греч. " зловонный" " бром"
Водород H ydrogenium От греч. " рождающий воду" " аш"
Гелий He lium От греч. " Солнце" " гелий"
Железо Fe rrum От лат. " меч" " феррум"
Золото Au rum От лат. " горящий" " аурум"
Йод I odum От греч. " фиолетовый" " йод"
Калий K alium От арабск. " щёлочь" " калий"
Кальций Ca lcium От лат. " известняк" " кальций"
Кислород O xygenium От греч. " рождающий кислоты" " о"
Кремний Si licium От лат. " кремень" " силициум"
Криптон Kr ypton От греч. " скрытый" " криптон"
Магний M ag nesium От назв. полуострова Магнезия " магний"
Марганец M an ganum От греч. " очищающий" " марганец"
Медь Cu prum От греч. назв. о. Кипр " купрум"
Натрий Na trium От арабск, " моющее средство" " натрий"
Неон Ne on От греч. " новый" " неон"
Никель Ni ccolum От нем. " медь святого Николая" " никель"
Ртуть H ydrarg yrum Лат. " жидкое серебро" " гидраргирум"
Свинец P lumb um От лат. названия сплава свинца с оловом. " плюмбум"
Сера S ulfur От санскриттского " горючий порошок" " эс"
Серебро A rg entum От греч. " светлый" " аргентум"
Углерод C arboneum От лат. " уголь" " цэ"
Фосфор P hosphorus От греч. " несущий свет" " пэ"
Фтор F luorum От лат. глагола " течь" " фтор"
Хлор Cl orum От греч. " зеленоватый" " хлор"
Хром C hr omium От греч. " краска" " хром"
Цезий C aes ium От лат. " небесно-голубой" " цезий"
Цинк Z in cum От нем. " олово" " цинк"

2.3. Химические формулы

Для обозначения химических веществ используют химические формулы .

Для молекулярных веществ химическая формула может обозначать и одну молекулу этого вещества.
Информация о веществе может быть разной, поэтому существуют разные типы химических формул .
В зависимости от полноты информации химические формулы делятся на четыре основных типа: простейшие , молекулярные , структурные и пространственные .

Подстрочные индексы в простейшейформуле не имеют общего делителя.
Индекс " 1" в формулах не ставится.
Примеры простейших формул: вода – Н 2 О, кислород – О, сера – S, оксид фосфора – P 2 O 5 , бутан – C 2 H 5 , фосфорная кислота – H 3 PO 4 , хлорид натрия (поваренная соль) – NaCl.
Простейшая формула воды (Н 2 О) показывает, что в состав воды входит элемент водород (Н) и элемент кислород (О), причем в любой порции (порция – часть чего-либо, что может быть разделено без утраты своих свойств.) воды число атомов водорода в два раза больше числа атомов кислорода.
Число частиц , в том числе и число атомов , обозначается латинской буквой N . Обозначив число атомов водорода – N H , а число атомов кислорода – N O , мы можем записать, что

Или N H: N O = 2: 1.

Простейшая формула фосфорной кислоты (Н 3 РО 4) показывает, что в состав фосфорной кислоты входят атомы водорода , атомы фосфора и атомы кислорода , причем отношение чисел атомов этих элементов в любой порции фосфорной кислоты равно 3:1:4, то есть

N H: N P: N O = 3: 1: 4.

Простейшая формула может быть составлена для любого индивидуального химического вещества, а для молекулярного вещества, кроме того, может быть составлена молекулярная формула .

Примеры молекулярных формул: вода – H 2 O, кислород – O 2 , сера – S 8 , оксид фосфора – P 4 O 10 , бутан – C 4 H 10 , фосфорная кислота – H 3 PO 4 .

У немолекулярных веществ молекулярных формул нет.

Последовательность записи символов элементов в простейших и молекулярных формулах определяется правилами химического языка, с которыми вы познакомитесь по мере изучения химии. На информацию, передаваемую этими формулами, последовательность символов влияния не оказывает.

Из знаков, отражающих строение веществ, мы будем использовать пока только валентный штрих (" черточку"). Этот знак показывает наличие между атомами так называемой ковалентной связи (что это за тип связи и каковы его особенности, вы скоро узнаете).

В молекуле воды атом кислорода связан простыми (одинарными) связями с двумя атомами водорода, а атомы водорода между собой не связаны. Именно это наглядно показывает структурная формула воды.

Другой пример: молекула серы S 8 . В этой молекуле 8 атомов серы образуют восьмичленный цикл, в котором каждый атом серы связан с двумя другими атомами простыми связями. Сравните структурную формулу серы с объемной моделью ее молекулы, показанной на рис. 3. Обратите внимание на то, что структурная формула серы не передает форму ее молекулы, а показывает только последовательность соединения атомов ковалентными связями.

Структурная формула фосфорной кислоты показывает, что в молекуле этого вещества один из четырех атомов кислорода связан только с атомом фосфора двойной связью, а атом фосфора, в свою очередь, связан еще с тремя атомами кислорода простыми связями. Каждый из этих трех атомов кислорода, кроме того, связан простой связью с одним из трех имеющихся в молекуле атомов водорода./p>

Сравните приведенную ниже объемную модель молекулы метана с его пространственной, структурной и молекулярной формулой:

В пространственной формуле метана клиновидныевалентные штрихи как бы в перспективе показывают, какой из атомов водорода находится " ближе к нам" , а какой " дальше от нас" .

Иногда в пространственной формуле указывают длины связей и значения углов между связями в молекуле, как это показано на примере молекулы воды.

Немолекулярные вещества не содержат молекул. Для удобства проведения химических расчетов в немолекулярном веществе выделяют так называемую формульную единицу .

Примеры состава формульных единиц некоторых веществ: 1) диоксид кремния (кварцевый песок, кварц) SiO 2 – формульная единица состоит из одного атома кремния и двух атомов кислорода; 2) хлорид натрия (поваренная соль) NaCl – формульная единица состоит из одного атома натрия и одного атома хлора; 3) железо Fe – формульная единица состоит из одного атома железа.Как и молекула, формульная единица – наименьшая порция вещества, сохраняющая его химические свойства.

Таблица 4

Информация, передаваемая формулами разных типов

Тип формулы

Информация, передаваемая формулой.

Простейшая

Молекулярная

Структурная

Пространственная

  • Атомы каких элементов входят в состав вещества.
  • Соотношения между числами атомов этих элементов.
  • Число атомов каждого из элементов в молекуле.
  • Типы химических связей.
  • Последовательность соединения атомов ковалентными связями.
  • Кратность ковалентных связей.
  • Взаимное расположение атомов в пространстве.
  • Длины связей и углы между связями (если указаны).

Рассмотрим теперь на примерах, какую информацию дают нам формулы разных типов.

1. Вещество: уксусная кислота . Простейшая формула – СН 2 О, молекулярная формула – C 2 H 4 O 2 , структурная формула

Простейшая формула говорит нам, что
1) в состав уксусной кислоты входит углерод, водород и кислород;
2) в этом веществе число атомов углерода относится к числу атомов водорода и к числу атомов кислорода, как 1:2:1, то есть N H: N C:N O = 1:2:1.
Молекулярная формула добавляет, что
3) в молекуле уксусной кислоты – 2 атома углерода, 4 атома водорода и 2 атома кислорода.
Структурная формула добавляет, что
4, 5) в молекуле два атома углерода связаны между собой простой связью; один из них, кроме этого, связан с тремя атомами водорода, с каждым простой связью, а другой – с двумя атомами кислорода, с одним – двойной связью, а с другим – простой; последний атом кислорода связан еще простой связью с четвертым атомом водорода.

2. Вещество: хлорид натрия . Простейшая формула – NaCl.
1) В состав хлорида натрия входит натрий и хлор.
2) В этом веществе число атомов натрия равно числу атомов хлора.

3. Вещество: железо . Простейшая формула – Fe.
1) В состав этого вещества входит только железо, то есть это простое вещество.

4. Вещество: триметафосфорная кислота . Простейшая формула – HPO 3 , молекулярная формула – H 3 P 3 O 9 , структурная формула

1) В состав триметафосфорной кислоты входит водород, фосфор и кислород.
2) N H: N P:N O = 1:1:3.
3) Молекула состоит из трех атомов водорода, трех атомов фосфора и девяти атомов кислорода.
4, 5) Три атома фосфора и три атома кислорода, чередуясь, образуют шестичленный цикл. Все связи в цикле простые. Каждый атом фосфора, кроме того, связан еще с двумя атомами кислорода, причем с одним – двойной связью, а с другим – простой. Каждый из трех атомов кислорода, связанных простыми связямис атомами фосфора, связан еще простой связью с атомом водорода.

Фосфорная кислота – H 3 PO 4 (другое название – ортофосфорная кислота) – прозрачное бесцветное кристаллическое вещество молекулярного строения, плавящееся при 42 o С. Это вещество очень хорошо растворяется в воде и даже поглощает пары воды из воздуха (гигроскопично). Фосфорную кислоту производят в больших количествах и используют прежде всего в производстве фосфорных удобрений, а также в химической промышленности, при производстве спичек и даже в строительстве. Кроме того, фосфорная кислота применяется при изготовлении цемента в зубоврачебной технике, входит в состав многих лекарственных средств. Эта кислота достаточно дешева, поэтому в некоторых странах, например в США, очень чистая сильно разбавленная водой фосфорная кислота добавляется в освежающие напитки для замены дорогой лимонной кислоты.
Метан – CH 4 . Если у вас дома есть газовая плита, то с этим веществом вы сталкиваетесь ежедневно: природный газ, который горит в конфорках вашей плиты, на 95 % состоит из метана. Метан – газ без цвета и запаха с температурой кипения –161 o С. В смеси с воздухом он взрывоопасен, этим и объясняются происходящие иногда в угольных шахтах взрывы и пожары (другое название метана – рудничный газ). Третье название метана – болотный газ – связано с тем, что пузырьки именно этого газа поднимаются со дна болот, где он образуется в результате деятельности некоторых бактерий. В промышленности метан используется как топливо и сырье для производства других веществ.Метан является простейшим углеводородом . К этому классу веществ относятся также этан (C 2 H 6), пропан (C 3 H 8), этилен (C 2 H 4), ацетилен (C 2 H 2) и многие другие вещества.

Таблица 5 . Примеры формул разных типов для некоторых веществ -