Решаване на неравенства с различни основи. Решаване на експоненциални неравенства

В този урок ще разгледаме различни експоненциални неравенства и ще научим как да ги решаваме въз основа на техниката за решаване на най-простите експоненциални неравенства

1. Определение и свойства на експоненциална функция

Нека си припомним определението и основните свойства на експоненциалната функция. Решението на всички експоненциални уравнения и неравенства се основава на тези свойства.

Експоненциална функцияе функция от формата , където основата е степента и Тук x е независимата променлива, аргумент; y е зависимата променлива, функция.

Ориз. 1. Графика на експоненциална функция

Графиката показва нарастващи и намаляващи експоненти, илюстрирайки експоненциалната функция с основа, съответно по-голяма от едно и по-малка от единица, но по-голяма от нула.

И двете криви минават през точката (0;1)

Свойства на експоненциалната функция:

Домейн: ;

Диапазон от стойности: ;

Функцията е монотонна, нараства с, намалява с.

Монотонната функция приема всяка от своите стойности при дадена стойност на един аргумент.

Когато , когато аргументът нараства от минус до плюс безкрайност, функцията нараства от нула включително до плюс безкрайност, т.е. за дадени стойности на аргумента имаме монотонно нарастваща функция (). Напротив, когато аргументът нараства от минус до плюс безкрайност, функцията намалява от безкрайност до нула включително, т.е. за дадени стойности на аргумента имаме монотонно намаляваща функция ().

2. Най-простите показателни неравенства, метод на решение, пример

Въз основа на горното, ние представяме метод за решаване на прости експоненциални неравенства:

Техника за решаване на неравенства:

Изравняване на основите на степени;

Сравнете индикаторите, като запазите или промените знака за неравенство на противоположния.

Решението на сложните експоненциални неравенства обикновено се състои в свеждането им до най-простите експоненциални неравенства.

Основата на степента е по-голяма от единица, което означава, че знакът за неравенство се запазва:

Нека трансформираме дясната страна според свойствата на степента:

Основата на степента е по-малка от единица, знакът за неравенство трябва да бъде обърнат:

За да решим квадратното неравенство, решаваме съответното квадратно уравнение:

Използвайки теоремата на Виета намираме корените:

Клоните на параболата са насочени нагоре.

Така имаме решение на неравенството:

Лесно е да се досетите, че дясната страна може да бъде представена като степен с показател нула:

Основата на степента е по-голяма от единица, знакът за неравенство не се променя, получаваме:

Нека си припомним техниката за решаване на такива неравенства.

Помислете за дробно-рационалната функция:

Намираме областта на дефиницията:

Намиране на корените на функцията:

Функцията има един корен,

Избираме интервали с постоянен знак и определяме знаците на функцията на всеки интервал:

Ориз. 2. Интервали на постоянство на знака

Така получихме отговора.

Отговор:

3. Решаване на стандартни експоненциални неравенства

Нека разгледаме неравенства с еднакви показатели, но различни основи.

Едно от свойствата на експоненциалната функция е, че за всяка стойност на аргумента тя приема строго положителни стойности, което означава, че може да бъде разделена на експоненциална функция. Нека разделим даденото неравенство на дясната му страна:

Основата на степента е по-голяма от единица, знакът за неравенство се запазва.

Нека илюстрираме решението:

Фигура 6.3 показва графики на функции и . Очевидно, когато аргументът е по-голям от нула, графиката на функцията е по-висока, тази функция е по-голяма. Когато стойностите на аргумента са отрицателни, функцията отива по-ниско, тя е по-малка. Ако аргументът е равен, функциите са равни, което означава, че тази точка също е решение на даденото неравенство.

Ориз. 3. Илюстрация за пример 4

Нека трансформираме даденото неравенство според свойствата на степента:

Ето някои подобни термини:

Нека разделим двете части на:

Сега продължаваме да решаваме подобно на пример 4, разделете двете части на:

Основата на степента е по-голяма от единица, знакът за неравенство остава:

4. Графично решаване на показателни неравенства

Пример 6 - Решете неравенството графично:

Нека да разгледаме функциите от лявата и дясната страна и да изградим графика за всяка от тях.

Функцията е експоненциална и нараства в цялата си област на дефиниция, т.е. за всички реални стойности на аргумента.

Функцията е линейна и намалява в цялата си област на дефиниция, т.е. за всички реални стойности на аргумента.

Ако тези функции се пресичат, тоест системата има решение, тогава такова решение е уникално и може лесно да се познае. За да направим това, ние итерираме цели числа ()

Лесно е да се види, че коренът на тази система е:

Така графиките на функциите се пресичат в точка с аргумент равен на единица.

Сега трябва да получим отговор. Значението на даденото неравенство е, че показателят трябва да е по-голям или равен на линейната функция, тоест да е по-висок или да съвпада с нея. Отговорът е очевиден: (Фигура 6.4)

Ориз. 4. Илюстрация за пример 6

И така, разгледахме решаването на различни стандартни експоненциални неравенства. След това преминаваме към разглеждане на по-сложни експоненциални неравенства.

Библиография

Мордкович А. Г. Алгебра и началото на математическия анализ. - М.: Мнемозина. Muravin G. K., Muravin O. V. Алгебра и началото на математическия анализ. - М.: Дропла. Колмогоров А. Н., Абрамов А. М., Дудницин Ю. П. и др.. Алгебра и началото на математическия анализ. - М.: Просвещение.

математика md. Математика-повторение. com. Diffur. кемсу. ru.

Домашна работа

1. Алгебра и началото на анализа, 10-11 клас (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницин) 1990 г., № 472, 473;

2. Решете неравенството:

3. Решете неравенство.

Показателни уравнения и неравенства са тези, при които неизвестното се съдържа в показателя.

Решаването на експоненциални уравнения често се свежда до решаването на уравнението a x = a b, където a > 0, a ≠ 1, x е неизвестно. Това уравнение има един корен x = b, тъй като следната теорема е вярна:

Теорема. Ако a > 0, a ≠ 1 и a x 1 = a x 2, тогава x 1 = x 2.

Нека обосновем разгледаното твърдение.

Да приемем, че равенството x 1 = x 2 не е в сила, т.е. х 1< х 2 или х 1 = х 2 . Пусть, например, х 1 < х 2 . Тогда если а >1, тогава експоненциалната функция y = a x нараства и следователно неравенството a x 1 трябва да бъде изпълнено< а х 2 ; если 0 < а < 1, то функция убывает и должно выполняться неравенство а х 1 >a x 2. И в двата случая получихме противоречие с условието a x 1 = a x 2.

Нека разгледаме няколко проблема.

Решете уравнението 4 ∙ 2 x = 1.

Решение.

Нека запишем уравнението във вида 2 2 ∙ 2 x = 2 0 – 2 x+2 = 2 0, от което получаваме x + 2 = 0, т.е. х = -2.

Отговор. х = -2.

Решете уравнение 2 3x ∙ 3 x = 576.

Решение.

Тъй като 2 3x = (2 3) x = 8 x, 576 = 24 2, уравнението може да се запише като 8 x ∙ 3 x = 24 2 или като 24 x = 24 2.

От тук получаваме x = 2.

Отговор. х = 2.

Решете уравнението 3 x+1 – 2∙3 x - 2 = 25.

Решение.

Изваждайки общия множител 3 x - 2 извън скобите от лявата страна, получаваме 3 x - 2 ∙ (3 3 – 2) = 25 – 3 x - 2 ∙ 25 = 25,

откъдето 3 x - 2 = 1, т.е. x – 2 = 0, x = 2.

Отговор. х = 2.

Решете уравнението 3 x = 7 x.

Решение.

Тъй като 7 x ≠ 0, уравнението може да бъде записано като 3 x /7 x = 1, откъдето (3/7) x = 1, x = 0.

Отговор. х = 0.

Решете уравнението 9 x – 4 ∙ 3 x – 45 = 0.

Решение.

Чрез замяна на 3 x = a, това уравнение се свежда до квадратното уравнение a 2 – 4a – 45 = 0.

Решавайки това уравнение, намираме неговите корени: a 1 = 9 и 2 = -5, откъдето 3 x = 9, 3 x = -5.

Уравнението 3 x = 9 има корен 2, а уравнението 3 x = -5 няма корени, тъй като експоненциалната функция не може да приема отрицателни стойности.

Отговор. х = 2.

Решаването на експоненциални неравенства често се свежда до решаване на неравенствата a x > a b или a x< а b . Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Нека да разгледаме някои проблеми.

Решете неравенство 3 x< 81.

Решение.

Нека запишем неравенството във формата 3 x< 3 4 . Так как 3 >1, тогава функцията y = 3 x е нарастваща.

Следователно за х< 4 выполняется неравенство 3 х < 3 4 , а при х ≥ 4 выполняется неравенство 3 х ≥ 3 4 .

Така при х< 4 неравенство 3 х < 3 4 является верным, а при х ≥ 4 – неверным, т.е. неравенство
3 х< 81 выполняется тогда и только тогда, когда х < 4.

Отговор. х< 4.

Решете неравенството 16 x +4 x – 2 > 0.

Решение.

Нека означим 4 x = t, тогава получаваме квадратното неравенство t2 + t – 2 > 0.

Това неравенство е в сила за t< -2 и при t > 1.

Тъй като t = 4 x, получаваме две неравенства 4 x< -2, 4 х > 1.

Първото неравенство няма решения, тъй като 4 x > 0 за всички x € R.

Второто неравенство записваме във вида 4 x > 4 0, откъдето x > 0.

Отговор. x > 0.

Решете графично уравнението (1/3) x = x – 2/3.

Решение.

1) Да построим графики на функциите y = (1/3) x и y = x – 2/3.

2) Въз основа на нашата фигура можем да заключим, че графиките на разглежданите функции се пресичат в точката с абсцисата x ≈ 1. Проверката доказва, че

x = 1 е коренът на това уравнение:

(1/3) 1 = 1/3 и 1 – 2/3 = 1/3.

С други думи, намерихме един от корените на уравнението.

3) Да намерим други корени или да докажем, че няма такива. Функцията (1/3) x е намаляваща, а функцията y = x – 2/3 е нарастваща. Следователно при x > 1 стойностите на първата функция са по-малки от 1/3, а на втората – повече от 1/3; при х< 1, наоборот, значения первой функции больше 1/3, а второй – меньше 1/3. Геометрически это означает, что графики этих функций при х >1 и х< 1 «расходятся» и потому не могут иметь точек пересечения при х ≠ 1.

Отговор. х = 1.

Обърнете внимание, че от решението на тази задача по-специално следва, че неравенството (1/3) x > x – 2/3 е изпълнено за x< 1, а неравенство (1/3) х < х – 2/3 – при х > 1.

уебсайт, при пълно или частично копиране на материал се изисква връзка към източника.

Решаването на повечето математически проблеми по един или друг начин включва трансформиране на числови, алгебрични или функционални изрази. Горното се отнася особено за решението. Във версиите на Единния държавен изпит по математика този тип задачи включват по-специално задача C3. Да се ​​научите да решавате задачи C3 е важно не само за целите на успешното полагане на Единния държавен изпит, но и поради причината, че това умение ще бъде полезно при изучаване на курс по математика в гимназията.

Когато изпълнявате задачи C3, трябва да решавате различни видове уравнения и неравенства. Сред тях са рационални, ирационални, експоненциални, логаритмични, тригонометрични, съдържащи модули (абсолютни стойности), както и комбинирани. В тази статия се разглеждат основните типове експоненциални уравнения и неравенства, както и различни методи за тяхното решаване. Прочетете за решаването на други видове уравнения и неравенства в раздела „” в статиите, посветени на методите за решаване на задачи С3 от Единния държавен изпит по математика.

Преди да започнем да анализираме конкретни експоненциални уравнения и неравенства, като учител по математика, ви предлагам да освежите малко теоретичен материал, който ще ни е необходим.

Експоненциална функция

Какво е експоненциална функция?

Функция на формата г = a x, Където а> 0 и а≠ 1 се извиква експоненциална функция.

Основен свойства на експоненциалната функция г = a x:

Графика на експоненциална функция

Графиката на експоненциалната функция е експонент:

Графики на експоненциални функции (експоненти)

Решаване на експоненциални уравнения

Показателносе наричат ​​уравнения, в които неизвестната променлива се намира само в показатели на някои степени.

За решения експоненциални уравнениятрябва да знаете и да можете да използвате следната проста теорема:

Теорема 1.Експоненциално уравнение а f(х) = а ж(х) (Където а > 0, а≠ 1) е еквивалентно на уравнението f(х) = ж(х).

Освен това е полезно да запомните основните формули и операции със степени:

Title="Изобразено от QuickLaTeX.com">!}

Пример 1.Решете уравнението:

Решение:Използваме горните формули и заместване:

Тогава уравнението става:

Дискриминантът на полученото квадратно уравнение е положителен:

Title="Изобразено от QuickLaTeX.com">!}

Това означава, че това уравнение има два корена. Намираме ги:

Преминавайки към обратното заместване, получаваме:

Второто уравнение няма корени, тъй като експоненциалната функция е строго положителна в цялата област на дефиниция. Нека решим второто:

Като вземем предвид казаното в теорема 1, преминаваме към еквивалентното уравнение: х= 3. Това ще бъде отговорът на задачата.

Отговор: х = 3.

Пример 2.Решете уравнението:

Решение:Уравнението няма ограничения за обхвата на допустимите стойности, тъй като радикалният израз има смисъл за всяка стойност х(експоненциална функция г = 9 4 положителен и не равен на нула).

Решаваме уравнението чрез еквивалентни трансформации, използвайки правилата за умножение и деление на степени:

Последният преход беше извършен в съответствие с теорема 1.

Отговор:х= 6.

Пример 3.Решете уравнението:

Решение:двете страни на първоначалното уравнение могат да бъдат разделени на 0,2 х. Този преход ще бъде еквивалентен, тъй като този израз е по-голям от нула за всяка стойност х(експоненциалната функция е строго положителна в своята област на дефиниция). Тогава уравнението приема формата:

Отговор: х = 0.

Пример 4.Решете уравнението:

Решение:ние опростяваме уравнението до елементарно чрез еквивалентни трансформации, използвайки правилата за деление и умножение на степени, дадени в началото на статията:

Разделяне на двете страни на уравнението на 4 х, както в предишния пример, е еквивалентна трансформация, тъй като този израз не е равен на нула за никакви стойности х.

Отговор: х = 0.

Пример 5.Решете уравнението:

Решение:функция г = 3х, стоящ от лявата страна на уравнението, нараства. функция г = —х-2/3 от дясната страна на уравнението намалява. Това означава, че ако графиките на тези функции се пресичат, то най-много една точка. В този случай е лесно да се досетите, че графиките се пресичат в точката х= -1. Други корени няма да има.

Отговор: х = -1.

Пример 6.Решете уравнението:

Решение:ние опростяваме уравнението чрез еквивалентни трансформации, като имаме предвид навсякъде, че експоненциалната функция е строго по-голяма от нула за всяка стойност хи използвайки правилата за изчисляване на произведението и частното на степените, дадени в началото на статията:

Отговор: х = 2.

Решаване на експоненциални неравенства

Показателносе наричат ​​неравенства, в които неизвестната променлива се съдържа само в показатели на някои степени.

За решения експоненциални неравенстваизисква се познаване на следната теорема:

Теорема 2.Ако а> 1, тогава неравенството а f(х) > а ж(х) е еквивалентно на неравенство със същото значение: f(х) > ж(х). Ако 0< а < 1, то показательное неравенство а f(х) > а ж(х) е еквивалентно на неравенство с противоположно значение: f(х) < ж(х).

Пример 7.Решете неравенството:

Решение:Нека представим първоначалното неравенство във формата:

Нека разделим двете страни на това неравенство на 3 2 х, в този случай (поради положителността на функцията г= 3 2х) знакът за неравенство няма да се промени:

Нека използваме заместването:

Тогава неравенството ще приеме формата:

И така, решението на неравенството е интервалът:

преминавайки към обратното заместване, получаваме:

Поради положителността на експоненциалната функция, лявото неравенство се изпълнява автоматично. Използвайки добре известното свойство на логаритъма, преминаваме към еквивалентното неравенство:

Тъй като основата на степента е число, по-голямо от едно, еквивалентен (по теорема 2) е преходът към следното неравенство:

И така, най-накрая получаваме отговор:

Пример 8.Решете неравенството:

Решение:Използвайки свойствата на умножение и деление на степени, пренаписваме неравенството във формата:

Нека въведем нова променлива:

Като се вземе предвид тази замяна, неравенството приема формата:

Умножавайки числителя и знаменателя на дробта по 7, получаваме следното еквивалентно неравенство:

И така, следните стойности на променливата удовлетворяват неравенството T:

След това, преминавайки към обратното заместване, получаваме:

Тъй като основата на степента тук е по-голяма от единица, преходът към неравенството ще бъде еквивалентен (по теорема 2):

Накрая получаваме отговор:

Пример 9.Решете неравенството:

Решение:

Разделяме двете страни на неравенството с израза:

Той винаги е по-голям от нула (поради положителността на експоненциалната функция), така че не е необходимо да променяте знака за неравенство. Получаваме:

t разположен в интервала:

Преминавайки към обратното заместване, откриваме, че първоначалното неравенство се разделя на два случая:

Първото неравенство няма решения поради положителността на експоненциалната функция. Нека решим второто:

Пример 10.Решете неравенството:

Решение:

Разклонения на парабола г = 2х+2-х 2 са насочени надолу, следователно е ограничен отгоре от стойността, която достига на върха си:

Разклонения на парабола г = х 2 -2х+2 в индикатора са насочени нагоре, което означава, че е ограничен отдолу от стойността, която достига в своя връх:

В същото време функцията също се оказва ограничена отдолу г = 3 х 2 -2х+2, което е от дясната страна на уравнението. То достига най-малката си стойност в същата точка като параболата в експонентата и тази стойност е 3 1 = 3. Така че първоначалното неравенство може да е вярно само ако функцията отляво и функцията отдясно приемат стойност , равно на 3 (пресечната точка на диапазоните от стойности на тези функции е само това число). Това условие е изпълнено в една точка х = 1.

Отговор: х= 1.

За да се научите да решавате експоненциални уравнения и неравенства,необходимо е постоянно да се тренира в решаването им. Различни учебни помагала, задачници по начална математика, сборници със състезателни задачи, часове по математика в училище, както и индивидуални уроци с професионален преподавател могат да ви помогнат в тази нелека задача. От сърце Ви пожелавам успех в подготовката и отлични резултати на изпита.


Сергей Валериевич

P.S. Уважаеми гости! Моля, не пишете искания за решаване на вашите уравнения в коментарите. За съжаление, нямам абсолютно никакво време за това. Такива съобщения ще бъдат изтривани. Моля, прочетете статията. Може би в него ще намерите отговори на въпроси, които не са ви позволили да решите задачата си сами.

Урок и презентация на тема: "Показателни уравнения и показателни неравенства"

Допълнителни материали
Уважаеми потребители, не забравяйте да оставите вашите коментари, отзиви, пожелания! Всички материали са проверени с антивирусна програма.

Учебни помагала и тренажори в онлайн магазин Интеграл за 11 клас
Интерактивно помагало за 9–11 клас „Тригонометрия“
Интерактивно ръководство за 10–11 клас „Логаритми“

Дефиниция на експоненциалните уравнения

Момчета, изучавахме експоненциални функции, научихме техните свойства и изградихме графики, анализирахме примери за уравнения, в които бяха намерени експоненциални функции. Днес ще изучаваме експоненциални уравнения и неравенства.

Определение. Уравнения от вида: $a^(f(x))=a^(g(x))$, където $a>0$, $a≠1$ се наричат ​​експоненциални уравнения.

Припомняйки си теоремите, които изучавахме в темата "Експоненциална функция", можем да въведем нова теорема:
Теорема. Експоненциалното уравнение $a^(f(x))=a^(g(x))$, където $a>0$, $a≠1$ е еквивалентно на уравнението $f(x)=g(x) $.

Примери за експоненциални уравнения

Пример.
Решете уравнения:
а) $3^(3x-3)=27$.
b) $((\frac(2)(3)))^(2x+0,2)=\sqrt(\frac(2)(3))$.
в) $5^(x^2-6x)=5^(-3x+18)$.
Решение.
а) Знаем добре, че $27=3^3$.
Нека пренапишем нашето уравнение: $3^(3x-3)=3^3$.
Използвайки горната теорема, откриваме, че нашето уравнение се свежда до уравнението $3x-3=3$; решавайки това уравнение, получаваме $x=2$.
Отговор: $x=2$.

B) $\sqrt(\frac(2)(3))=((\frac(2)(3)))^(\frac(1)(5))$.
Тогава нашето уравнение може да бъде пренаписано: $((\frac(2)(3)))^(2x+0.2)=((\frac(2)(3)))^(\frac(1)(5) ) =((\frac(2)(3)))^(0,2)$.
$2х+0.2=0.2$.
$x=0$.
Отговор: $x=0$.

В) Първоначалното уравнение е еквивалентно на уравнението: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ и $x_2=-3$.
Отговор: $x_1=6$ и $x_2=-3$.

Пример.
Решете уравнението: $\frac(((0,25))^(x-0,5))(\sqrt(4))=16*((0,0625))^(x+1)$.
Решение:
Нека извършим поредица от действия последователно и приведем двете страни на нашето уравнение към едни и същи основи.
Нека извършим няколко операции от лявата страна:
1) $((0,25))^(x-0,5)=((\frac(1)(4)))^(x-0,5)$.
2) $\sqrt(4)=4^(\frac(1)(2))$.
3) $\frac(((0,25))^(x-0,5))(\sqrt(4))=\frac(((\frac(1)(4)))^(x-0 ,5)) (4^(\frac(1)(2)))= \frac(1)(4^(x-0,5+0,5))=\frac(1)(4^x) =((\frac(1) (4)))^x$.
Да преминем към дясната страна:
4) $16=4^2$.
5) $((0,0625))^(x+1)=\frac(1)((16)^(x+1))=\frac(1)(4^(2x+2))$.
6) $16*((0,0625))^(x+1)=\frac(4^2)(4^(2x+2))=4^(2-2x-2)=4^(-2x )= \frac(1)(4^(2x))=((\frac(1)(4)))^(2x)$.
Оригиналното уравнение е еквивалентно на уравнението:
$((\frac(1)(4)))^x=((\frac(1)(4)))^(2x)$.
$x=2x$.
$x=0$.
Отговор: $x=0$.

Пример.
Решете уравнението: $9^x+3^(x+2)-36=0$.
Решение:
Нека пренапишем нашето уравнение: $((3^2))^x+9*3^x-36=0$.
$((3^x))^2+9*3^x-36=0$.
Нека направим промяна на променливите, нека $a=3^x$.
В новите променливи уравнението ще приеме формата: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ и $a_2=3$.
Нека извършим обратната промяна на променливите: $3^x=-12$ и $3^x=3$.
В последния урок научихме, че експоненциалните изрази могат да приемат само положителни стойности, запомнете графиката. Това означава, че първото уравнение няма решения, второто уравнение има едно решение: $x=1$.
Отговор: $x=1$.

Нека си припомним как се решават експоненциални уравнения:
1. Графичен метод.Ние представяме двете страни на уравнението под формата на функции и изграждаме техните графики, намираме точките на пресичане на графиките. (Използвахме този метод в миналия урок).
2. Принципът на равенство на показателите.Принципът се основава на факта, че два израза с еднакви основи са равни тогава и само ако степените (експонентите) на тези основи са равни. $a^(f(x))=a^(g(x))$ $f(x)=g(x)$.
3. Метод на променлива замяна.Този метод трябва да се използва, ако уравнението при замяна на променливи опростява формата си и е много по-лесно за решаване.

Пример.
Решете системата от уравнения: $\begin (cases) (27)^y*3^x=1, \\ 4^(x+y)-2^(x+y)=12. \край (случаи)$.
Решение.
Нека разгледаме двете уравнения на системата поотделно:
$27^y*3^x=1$.
$3^(3y)*3^x=3^0$.
$3^(3y+x)=3^0$.
$x+3y=0$.
Разгледайте второто уравнение:
$4^(x+y)-2^(x+y)=12$.
$2^(2(x+y))-2^(x+y)=12$.
Нека използваме метода за промяна на променливите, нека $y=2^(x+y)$.
Тогава уравнението ще приеме формата:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ и $y_2=-3$.
Нека преминем към началните променливи, от първото уравнение получаваме $x+y=2$. Второто уравнение няма решения. Тогава нашата първоначална система от уравнения е еквивалентна на системата: $\begin (cases) x+3y=0, \\ x+y=2. \край (случаи)$.
Извадете второто от първото уравнение, получаваме: $\begin (cases) 2y=-2, \\ x+y=2. \край (случаи)$.
$\begin (cases) y=-1, \\ x=3. \край (случаи)$.
Отговор: $(3;-1)$.

Експоненциални неравенства

Да преминем към неравенствата. При решаване на неравенства е необходимо да се обърне внимание на основата на степента. Има два възможни сценария за развитие на събитията при решаване на неравенства.

Теорема. Ако $a>1$, тогава експоненциалното неравенство $a^(f(x))>a^(g(x))$ е еквивалентно на неравенството $f(x)>g(x)$.
Ако $0 a^(g(x))$ е еквивалентно на неравенството $f(x)

Пример.
Решаване на неравенства:
а) $3^(2x+3)>81$.
b) $((\frac(1)(4)))^(2x-4) c) $(0,3)^(x^2+6x)≤(0,3)^(4x+15)$ .
Решение.
а) $3^(2x+3)>81$.
$3^(2x+3)>3^4$.
Нашето неравенство е еквивалентно на неравенството:
$2x+3>4$.
$2x>1$.
$x>0,5$.

B) $((\frac(1)(4)))^(2x-4) $((\frac(1)(4)))^(2x-4) В нашето уравнение основата е, когато степента е по-малко от 1, тогава При замяна на неравенство с еквивалентно е необходимо да се смени знака.
$2x-4>2$.
$x>3$.

В) Нашето неравенство е еквивалентно на неравенството:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Нека използваме метода на интервално решение:
Отговор: $(-∞;-5]U
.

Нека да разгледаме същото неравенство отново и f (x) > b, Ако а>0И b<0 .

И така, диаграмата на фигура 3:


Пример за решаване на неравенство (1/3) x + 2 > –9. Както забелязваме, без значение какво число заместваме с x, (1/3) x + 2 винаги е по-голямо от нула.

Отговор: (–∞; +∞) .

Как се решават неравенства от вида? и f(x)< b , Където а>1И b>0?

Диаграма на фигура 4:

И следния пример: 3 3 – x ≥ 8.
Тъй като 3 > 1 и 8 > 0, тогава
3 – x > log 3 8, т.е
–x > log 3 8 – 3,
х< 3 – log 3 8.

Отговор: (0; 3–log 3 8) .

Как може да се промени решението на неравенството? и f(x)< b , при 0И b>0?

Диаграма на фигура 5:

И следният пример: Решете неравенство 0,6 2x – 3< 0,36 .

Следвайки диаграмата на фигура 5, получаваме
2x – 3 > log 0,6 0,36,
2х – 3 > 2,
2x > 5,
х > 2,5

Отговор: (2,5; +∞) .

Нека разгледаме последната схема за решаване на неравенство от вида и f(x)< b , при а>0И b<0 , представен на фигура 6:

Например, нека решим неравенството:

Забелязваме, че без значение какво число заместваме с x, лявата страна на неравенството винаги е по-голяма от нула и нашият израз е по-малък от -8, т.е. и нула, което означава, че няма решения.

Отговор: няма решения.

Знаейки как да решавате най-простите експоненциални неравенства, можете да продължите решаване на експоненциални неравенства.

Пример 1.

Намерете най-голямото цяло число на x, което удовлетворява неравенството

Тъй като 6 x е по-голямо от нула (при нито едно x знаменателят не отива на нула), умножавайки двете страни на неравенството по 6 x, получаваме:

440 – 2 6 2x > 8, тогава
– 2 6 2x > 8 – 440,
– 2 6 2х > – 332,
6 2x< 216,
2x< 3,

х< 1,5. Наибольшее целое число из помежутка (–∞; 1,5) это число 1.

Отговор: 1.

Пример 2.

Решете неравенство 2 2 x – 3 2 x + 2 ≤ 0

Нека означим 2 x с y, да получим неравенството y 2 – 3y + 2 ≤ 0 и да решим това квадратно неравенство.

y 2 – 3y +2 = 0,
y 1 = 1 и y 2 = 2.

Клоните на параболата са насочени нагоре, нека начертаем графика:

Тогава решението на неравенството ще бъде неравенство 1< у < 2, вернемся к нашей переменной х и получим неравенство 1< 2 х < 2, решая которое и найдем ответ 0 < x < 1.

Отговор: (0; 1) .

Пример 3. Решете неравенството 5 x +1 – 3 x +2< 2·5 x – 2·3 x –1
Нека съберем изрази с еднакви основи в една част от неравенството

5 x +1 – 2 5 x< 3 x +2 – 2·3 x –1

Нека извадим 5 x от скобите от лявата страна на неравенството и 3 x от дясната страна на неравенството и получаваме неравенството

5 x (5 – 2)< 3 х (9 – 2/3),
3,5 х< (25/3)·3 х

Разделете двете страни на неравенството на израза 3 3 x, знакът на неравенството не се променя, тъй като 3 3 x е положително число, получаваме неравенството:

х< 2 (так как 5/3 > 1).

Отговор: (–∞; 2) .

Ако имате въпроси относно решаването на експоненциални неравенства или искате да практикувате решаването на подобни примери, запишете се за моите уроци. Преподавател Валентина Галиневская.

уебсайт, при пълно или частично копиране на материал се изисква връзка към източника.